REFERENCES
[1] V. Volterra, Fluctuations in the abundance of species considered mathematically, Nature CXVIII (1926), 558-560.
[2] R.P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predatorprey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl. 398 (2013), 278-295.
[3] J. Huang, S. Ruan, J. Song, Bifurcations in a predatorCprey system of Leslie type with generalized Holling type III functional response, J. Diff. Equat. 257 (2014), 1721-1752.
[4] M.A. Aziz-Alaoui, M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16 (2003), 1069-1075.
[5] C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified LeslieGower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009), 482-498.
[6] X. Song, Y. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect, Nonlinear Anal. RWA. 9 (2008), 64-79.
[7] Y. Song, J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl. 301 (2005) 1-21.
[8] Y. Jia, P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. RWA. 32 (2016), 229-241.
[9] B.D. Deka, Atasi Patra, Jai Tushar, B. Dubey, Stability and Hopf-bifurcation in a general Gauss type two-prey and one-predator system, Appl. Math. Model. 40 (2016), 5793-5818.
[10] T.K. Kar, S. Jana, Stability and bifurcation analysis of a stage structured predator prey model with time delay, Appl. Math. Comput. 219 (2012), 3779-3792.
[11] T.K. Kar, U.K. Pahari, Modelling and analysis of a prey-predator system with stage-structure and harvesting, Nonlinear Anal. RWA. 8 (2007), 601-609.
[12] W. Wang, Permanence and stability of a stage structured predator prey model, J. Math. Anal. Appl. 262 (2001), 499-528.
[13] X. Wang, J. Wei, Dynamics in a diffusive predator-prey system with strong Allee effect and Ivlev-type functional response, J. Math. Anal. Appl. 422 (2015), 1447-1462.
[14] J. Maynard Smith, Models in Ecology, Cambridge University, Cambridge, 1974.
[15] M.P. Hassell, The Dynamics of Arthropod PredatorCPrey Systems, Princeton University, Princeton, NJ, 1978.
[16] M.A. Hoy, Almonds (California), in: W. Helle, M.W. Sabelis (Eds.), Spider Mites: Their Biology, Natural Enemies and Control, World Crop Pests, vol. 1B, Elsevier, Amsterdam, 1985.
[17] J.M. McNair, The effects of refuges on predator-prey interactions: a reconsideration, Theor. Popul. Biol. 29 (1986), 38.
[18] A. Sih, Prey refuges and predator-prey stability, Theor. Popul. Biol. 31 (1987), 1-13.
[19] A.R. Ives, A.P. Dobson, Antipredator behavior and the population dynamics of simple predator-prey systems, Am. Nat. 130 (1987), 431.
[20] G.D. Ruxton, Short term refuge use and stability of predatorCprey models, Theor. Popul. Biol. 47 (1995), 1-12.
[21] M.E. Hochberg, R.D. Holt, Refuge evolution and the population dynamics of coupled hostCparasitoid associations, Evol. Ecol. 9 (1995), 633-642.
[22] R.J. Taylor, Predation, Chapman and Hall, New York, 1984.
[23] E. Gonzalez-Olivars, R. Ramos-Jiliberto, Dynamics consequences of prey refuges in a simple model system: more prey, few predators and enhanced stability, Ecol. Model. 166 (2003) 135-146.
[24] Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang, Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci. 218 (2009) 73-79.
[25] Y. Gong, J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predatorprey model with prey harvesting, Acta Math. Appl. Sinica Eng. Ser. 30 (2014), 239-244.
[26] H. Zhao, X. Zhang, X. Huang, Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput. 266 (2015), 462-480.
[27] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified LeslieGower predator-prey model with timedelay and prey harvesting, J. Math. Anal. Appl. 422 (2015), 1072-1090.
[28] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. RWA. 33 (2017), 58-82.