A DELAYED PREDATOR-PREY MODEL WITH HOLLING IV FUNCTIONAL RESPONSE AND PREY REFUGE

TitleA DELAYED PREDATOR-PREY MODEL WITH HOLLING IV FUNCTIONAL RESPONSE AND PREY REFUGE
Publication TypeJournal Article
Year of Publication2018
AuthorsWANG SHUFAN, WANG WENTING, LIU HUA
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page663
Pagination10
Date Published07/2018
ISSN1056-2176
AMS Subject Classification34K18, 37C75, 92B05, 92D25, 93D20
Abstract

A delay-induced predator-prey model with Holling IV functional response and effect of prey refuge is proposed. The globally asymptotically stability of the coexist equilibrium and Hopf bifurcation are investigated by the theory of the differentially dynamical system. The results show that there exist stability switches and Hopf bifurcation occurs while the gestation delay cross a threshold value.

PDFhttps://acadsol.eu/dsa/articles/27/3/14.pdf
DOI10.12732/dsa.v27i3.14
Refereed DesignationRefereed
Full Text

REFERENCES

[1] V. Volterra, Fluctuations in the abundance of species considered mathematically, Nature CXVIII (1926), 558-560.
[2] R.P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predatorprey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl. 398 (2013), 278-295.
[3] J. Huang, S. Ruan, J. Song, Bifurcations in a predatorCprey system of Leslie type with generalized Holling type III functional response, J. Diff. Equat. 257 (2014), 1721-1752.
[4] M.A. Aziz-Alaoui, M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16 (2003), 1069-1075.
[5] C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified LeslieGower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009), 482-498.
[6] X. Song, Y. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect, Nonlinear Anal. RWA. 9 (2008), 64-79.
[7] Y. Song, J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl. 301 (2005) 1-21.
[8] Y. Jia, P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. RWA. 32 (2016), 229-241.
[9] B.D. Deka, Atasi Patra, Jai Tushar, B. Dubey, Stability and Hopf-bifurcation in a general Gauss type two-prey and one-predator system, Appl. Math. Model. 40 (2016), 5793-5818.
[10] T.K. Kar, S. Jana, Stability and bifurcation analysis of a stage structured predator prey model with time delay, Appl. Math. Comput. 219 (2012), 3779-3792.
[11] T.K. Kar, U.K. Pahari, Modelling and analysis of a prey-predator system with stage-structure and harvesting, Nonlinear Anal. RWA. 8 (2007), 601-609.
[12] W. Wang, Permanence and stability of a stage structured predator prey model, J. Math. Anal. Appl. 262 (2001), 499-528.
[13] X. Wang, J. Wei, Dynamics in a diffusive predator-prey system with strong Allee effect and Ivlev-type functional response, J. Math. Anal. Appl. 422 (2015), 1447-1462.
[14] J. Maynard Smith, Models in Ecology, Cambridge University, Cambridge, 1974. 
[15] M.P. Hassell, The Dynamics of Arthropod PredatorCPrey Systems, Princeton University, Princeton, NJ, 1978.
[16] M.A. Hoy, Almonds (California), in: W. Helle, M.W. Sabelis (Eds.), Spider Mites: Their Biology, Natural Enemies and Control, World Crop Pests, vol. 1B, Elsevier, Amsterdam, 1985.
[17] J.M. McNair, The effects of refuges on predator-prey interactions: a reconsideration, Theor. Popul. Biol. 29 (1986), 38.
[18] A. Sih, Prey refuges and predator-prey stability, Theor. Popul. Biol. 31 (1987), 1-13.
[19] A.R. Ives, A.P. Dobson, Antipredator behavior and the population dynamics of simple predator-prey systems, Am. Nat. 130 (1987), 431.
[20] G.D. Ruxton, Short term refuge use and stability of predatorCprey models, Theor. Popul. Biol. 47 (1995), 1-12.
[21] M.E. Hochberg, R.D. Holt, Refuge evolution and the population dynamics of coupled hostCparasitoid associations, Evol. Ecol. 9 (1995), 633-642.
[22] R.J. Taylor, Predation, Chapman and Hall, New York, 1984.
[23] E. Gonzalez-Olivars, R. Ramos-Jiliberto, Dynamics consequences of prey refuges in a simple model system: more prey, few predators and enhanced stability, Ecol. Model. 166 (2003) 135-146.
[24] Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang, Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci. 218 (2009) 73-79.
[25] Y. Gong, J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predatorprey model with prey harvesting, Acta Math. Appl. Sinica Eng. Ser. 30 (2014), 239-244.
[26] H. Zhao, X. Zhang, X. Huang, Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput. 266 (2015), 462-480.
[27] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified LeslieGower predator-prey model with timedelay and prey harvesting, J. Math. Anal. Appl. 422 (2015), 1072-1090.
[28] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. RWA. 33 (2017), 58-82.