[1] C. Shannon, D. Moore, The Spread of the Witty Worm, IEEE Security & Privacy , July/August, (2004), 46-50.
[2] Z. Ahmad, The Zubair-G Family of Distributions: Properties and Applications, Annals of Data Science, (2018), doi: 10.1007/s40745-018-0169-9.
[3] N. Kyurkchiev, A. Iliev, A. Rahnev, Comments on a Zubair-G Family of Cumulative Lifetime Distributions. Some Extensions, Communications in Applied Analysis, 23, (1), (2019), 1-20.
[4] I. Ghosh, M. Bourguignon, A new extended Bur XII distribution, Austrian J. of Statistics, 46, No. 1 (2016), 33-39.
[5] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978-0-821-83835-8.
[6] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54, No. 1 (2016), 109-119.
[7] A. Iliev, N. Kyurkchiev, S.Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.
[8] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note On the Three-stage Growth Model, Dynamic Systems and Applications, 28, No. 1 (2019), 63-72.
[9] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note On the n-stage Growth Model. Overview, Biomath Communications, 5, No. 2 (2018).
[10] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.
[11] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-90569-0.
[12] N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-330-33143-3.
[13] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[14] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., 120 No. 1 (2018), 127-136.
[15] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-613- 9-87794-2.
[16] N. Kyurkchiev, A. Iliev, A. Rahnev, T. Terzieva, A new analysis of Code Red and Witty worms behavior, Communications in Applied Analysis, 23, No. 2 (2019), 267-285.
[17] N. Pavlov, N. Kyurkchiev, A. Iliev, A. Rahnev, A Note on the Zubair-G Fam- ily with baseline Lomax Cumulative Distribution Function. Some Applications, International Journal of Pure and Applied Mathematics, 120, No. 3 (2018), 471-486.
[18] N. Kyurkchiev, A. Iliev, A. Rahnev, Some comments on the Weibull-R Family with Baseline Pareto and Lomax Cumulative Sigmoids, International Journal of Pure and Applied Mathematics, 120, No. 3 (2018), 461-469.
[19] M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, W. Court, C. Lomas, M. Mendila, D. Hardisson, S. Eccles, Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation, BMC Biology, 10 (2012).
[20] A. Antonov, S. Nenov, T. Tsvetkov, Impulsive controllability of tumor growth, Dynamic Systems and Appl., 28, No. 1 (2019), 93-109.
[21] A. Dishliev, K. Dishlieva, S. Nenov, Specific Asymptotic Properties of the Solutions of Impulsive Differential Equations. Methods and Applications, Academic Publications, (2012), available at http://www.acadpubl.eu/ap/node/3.
[22] S. Nenov, Impulsive controllability and optimization problems. Lagrange’smethod and applications, ZAA Zeitschrift f¨ur Analysis und ihre Anwendungen, Heldermann Verlag, Berlin, 17, No. 2 (1998), 501-512.
[23] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Investigations of the K-stage Erlangian software reliability growth model, Int. J. of Pure and Appl. Math., 119, No. 3 (2018), 441-449.
[24] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted exponential software reliability model, International Journal of Advanced Research in Computer and Communication Engineering, 7, No. 3 (2018), 484- 487.
[25] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, Analysis of the Chen’s and Pham’s Software Reliability Models, Cybernetics and Information Technologies, 18, No. 3 (2018), 37-47.
[26] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On some nonstandard software reliability models, Dynamic Systems and Applications, 27, No. 4 (2018), 757- 771.
[27] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz-type software reliability models, International Electronic Journal of Pure and Applied Mathematics, 12, No. 1 (2018), 43-57.
[28] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: Approximation and modeling aspects, International Journal of Pure and Applied Mathematics, 118, No. 3 (2018), 599- 611.
[29] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamada-exponential software reliability model, International Journal of Pure and Applied Mathematics , 118, No. 4 (2018), 871-882.
[30] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on The ”Mean Value” Software Reliability Model, International Journal of Pure and Applied Mathematics , 118, No. 4 (2018), 949-956.
[31] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software reliability model, Int. J. of Latest Research in Engineering and Technology, 4, No. 5 (2018), 1-6.
[32] N. Kyurkchiev, A. Iliev, A. Rahnev, Investigations on the G Family with Baseline Burr XII Cumulative Sigmoid, Biomath Communications, 5, No. 2 (2018) (to appear).
[33] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on Ohbas Inflexion S- shaped Software Reliability Growth Model, Collection of scientific works from conference Mathematics. Informatics. Information Technologies. Application in Education, Pamporovo, Bulgaria, October 10-12, 2018. (to appear)