A NOTE ON THE THREE–STAGE GROWTH MODEL

TitleA NOTE ON THE THREE–STAGE GROWTH MODEL
Publication TypeJournal Article
Year of Publication2019
AuthorsMARKOV SVETOSLAV, ILIEV ANTON, RAHNEV3 ASEN, KYURKCHIEV NIKOLAY
JournalDynamic Systems and Applications
Volume28
Issue1
Start Page63
Pagination10
Date Published11/2018
ISSN1056-2176
AMS Subject Classification41A46
Abstract

In this paper we study the one–sided Hausdorff approximation of the generalized cut function by sigmoidal modified three–stage growth model. The model has a certain right of existence insofar as the theory of sigmoidal functions is well developed. The estimates of the value of the best Hausdorff approximation obtained in this article can be used in practice as one possible additional criterion in ”saturation” study. We examine the small data for modeling the growth of red abalone Haliotis Rufescens in Northern California. Numerical examples are presented
using CAS MATHEMATICA.

PDFhttps://acadsol.eu/dsa/articles/28/1/4.pdf
DOI10.12732/dsa.v28i1.4
Refereed DesignationRefereed
Full Text

REFERENCES

[1] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, Wiley-Blackwell (2012), ISBN: 978-3-527-33074-4.
[2] D. Soete, R. Gijbels, J. Hoste, Neuron Activation Analysis, Wiley-Interscience (1972).
[3] H. Bateman, The solution of a system of differential equations occurring in the theory of radio-active transformations, Proc. Cambridge Phil. Soc., 15 (1910), 423-427. 
[4] L. Rogers-Bennett, D. W. Rogers, A two-step growth curve: Approach to the von Bertalanffy and Gompertz equations, Adv. in Pure Math., 6 (2016), 321-330.
[5] L. Rogers-Bennett, D. W. Rogers, S. A. Schultz, Modeling growth and mortality of red abalone Haliotis Rufescens in Northern California, J. of Shellfish Research, 26 No. 3 (2007), 719-727.
[6] B. Sendov, Hausdorff Approximations, Kluwer, Boston (1990).
[7] R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by J.W.von Gudenberg, Springer, Berlin (2015).
[8] R. Anguelov, S. Markov, B. Sendov, On the Normed Linear Space of Hausdorff Continuous Functions. In: Lirkov, I., et al. (Eds.): Lecture Notes in Computer Science, 3743, Springer (2006), 281-288.
[9] R. Anguelov, S. Markov, B. Sendov, Algebraic Operations on the Space of Hausdorff Continuous Functions. In: Bojanov, B. (Ed.): Constructive Theory of Functions, Prof. M. Drinov Academic Publ. House, Sofia (2006), 35-44.
[10] R. Anguelov, S. Markov, B. Sendov, The Set of Hausdorff Continuous Functions - the Largest Linear Space of Interval Functions, Reliable Computing, 12 (2006), 337-363.
[11] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54 No. 1 (2016), 109-119.
[12] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.
[13] N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-330-33143-3.
[14] R. Anguelov, M. Borisov, A. Iliev, N. Kyurkchiev, S. Markov, On the chemical meaning of some growth models possessing Gompertzian-type property, Math. Meth. Appl. Sci., (2017), 1-12, doi:10.1002/mma.4539.
[15] R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the Blumberg’s hyper-log-logistic curve, BIOMATH, 7 No. 1 (2018), 8 pp.
[16] A. Iliev, N. Kyurkchiev, S.Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.
[17] A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the cut function by Stannard and Richards sigmoid functions, IJPAM, 109 No. 1 (2016), 119-128. 
[18] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the Log-logistic and transmuted Log-logistic models. Some applications, Dynamic Systems and Applications, 27 No. 3 (2018), 593-607.
[19] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the cut functions by hyper-log-logistic function, Neural, Parallel and Scientific Computations, 26 No. 2 (2018), 169-182.
[20] N. Kyurkchiev, A. Iliev, S. Markov, Families of recurrence generated three and four parametric activation functions, Int. J. Sci. Res. and Development, 4 No. 12 (2017), 746-750.
[21] N. Kyurkchiev, A note on the new geometric representation for the parameters in the fibril elongation process. C. R. Acad. Bulg. Sci., 69 No. 8, (2016), 963-972.
[22] N. Kyurkchiev, On the numerical solution of the general ”ligand-gated neuroreceptors model’ via CAS Mathematica, Pliska Stud. Math. Bulgar., 26 (2016), 133-142.
[23] N. Kyurkchiev, S. Markov, On the numerical solution of the general kinetic ”Kangle” reaction system, Journal of Mathematical Chemistry, 54 No. 3 (2016), 792-805.
[24] L. Rogers-Bennett, D. Rogers, W. Bennett, T. Ebert, Modeling Red Sea Urchin Growth Using Six Growth Models, Fishery Bulletin, 101 (2003), 614-626.
[25] R. Leaf, L. Rogers-Bennett, Y. Jiao, Exploring the Use of a Size Based Egg per Recruit Model for the Red Abalone Fishery in California, North American Journal of Fisheries Management, 28 (2008), 1638-1647.
[26] N. Lester, B. Shuter, P. Abrams, Interpreting the von Bertalanffy Model of Somatic Growth in Fishes: The Cost of Reproduction, Proceedings of the Royal Society B: Biological Sciences, 271 (2004), 1625-1631.
[27] A. Hernandez-Llamas, D. Ratkowsky, Growth of Fishes, Crustaceans and Mollusks: Estimation of the von Bertalanffy, Logistic, Gompertz and Richards Curves and a New Growth Model, Marine Ecology Progress Series, 282 (2004), 237-244.
[28] L. von Bertalanffy, A Quantitative Theory of Organic Growth (Inquiries on Growth Laws. II), Human Biology, 10 (1938), 181-213.
[29] K. Sainsbury, Effect of Individual Variability on the von Bertalanffy Growth Equation, Canadian Journal of Fisheries and Aquatic Sciences, 37 (1980), 241- 247.
[30] P. Haaker, D. Parker, K. Barsky, C. Chun, Growth of Red Abalone, Haliotis rufescens (Swainson), at Johnson’s Lee Santa Rosa Island, California, Journal of Shellfish Research, 17 (1998), 747-753. 
[31] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
[32] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the generalized cut functions of degree p + 1 by smooth hyper-log-logistic function, Dynamic Systems and Applications, 27 No. 4 (2018), 715-728.
[33] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[34] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-87794-2.