REFERENCES
[1] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, Wiley-Blackwell (2012), ISBN: 978-3-527-33074-4.
[2] D. Soete, R. Gijbels, J. Hoste, Neuron Activation Analysis, Wiley-Interscience (1972).
[3] H. Bateman, The solution of a system of differential equations occurring in the theory of radio-active transformations, Proc. Cambridge Phil. Soc., 15 (1910), 423-427.
[4] L. Rogers-Bennett, D. W. Rogers, A two-step growth curve: Approach to the von Bertalanffy and Gompertz equations, Adv. in Pure Math., 6 (2016), 321-330.
[5] L. Rogers-Bennett, D. W. Rogers, S. A. Schultz, Modeling growth and mortality of red abalone Haliotis Rufescens in Northern California, J. of Shellfish Research, 26 No. 3 (2007), 719-727.
[6] B. Sendov, Hausdorff Approximations, Kluwer, Boston (1990).
[7] R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by J.W.von Gudenberg, Springer, Berlin (2015).
[8] R. Anguelov, S. Markov, B. Sendov, On the Normed Linear Space of Hausdorff Continuous Functions. In: Lirkov, I., et al. (Eds.): Lecture Notes in Computer Science, 3743, Springer (2006), 281-288.
[9] R. Anguelov, S. Markov, B. Sendov, Algebraic Operations on the Space of Hausdorff Continuous Functions. In: Bojanov, B. (Ed.): Constructive Theory of Functions, Prof. M. Drinov Academic Publ. House, Sofia (2006), 35-44.
[10] R. Anguelov, S. Markov, B. Sendov, The Set of Hausdorff Continuous Functions - the Largest Linear Space of Interval Functions, Reliable Computing, 12 (2006), 337-363.
[11] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54 No. 1 (2016), 109-119.
[12] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.
[13] N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-330-33143-3.
[14] R. Anguelov, M. Borisov, A. Iliev, N. Kyurkchiev, S. Markov, On the chemical meaning of some growth models possessing Gompertzian-type property, Math. Meth. Appl. Sci., (2017), 1-12, doi:10.1002/mma.4539.
[15] R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the Blumberg’s hyper-log-logistic curve, BIOMATH, 7 No. 1 (2018), 8 pp.
[16] A. Iliev, N. Kyurkchiev, S.Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.
[17] A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the cut function by Stannard and Richards sigmoid functions, IJPAM, 109 No. 1 (2016), 119-128.
[18] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the Log-logistic and transmuted Log-logistic models. Some applications, Dynamic Systems and Applications, 27 No. 3 (2018), 593-607.
[19] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the cut functions by hyper-log-logistic function, Neural, Parallel and Scientific Computations, 26 No. 2 (2018), 169-182.
[20] N. Kyurkchiev, A. Iliev, S. Markov, Families of recurrence generated three and four parametric activation functions, Int. J. Sci. Res. and Development, 4 No. 12 (2017), 746-750.
[21] N. Kyurkchiev, A note on the new geometric representation for the parameters in the fibril elongation process. C. R. Acad. Bulg. Sci., 69 No. 8, (2016), 963-972.
[22] N. Kyurkchiev, On the numerical solution of the general ”ligand-gated neuroreceptors model’ via CAS Mathematica, Pliska Stud. Math. Bulgar., 26 (2016), 133-142.
[23] N. Kyurkchiev, S. Markov, On the numerical solution of the general kinetic ”Kangle” reaction system, Journal of Mathematical Chemistry, 54 No. 3 (2016), 792-805.
[24] L. Rogers-Bennett, D. Rogers, W. Bennett, T. Ebert, Modeling Red Sea Urchin Growth Using Six Growth Models, Fishery Bulletin, 101 (2003), 614-626.
[25] R. Leaf, L. Rogers-Bennett, Y. Jiao, Exploring the Use of a Size Based Egg per Recruit Model for the Red Abalone Fishery in California, North American Journal of Fisheries Management, 28 (2008), 1638-1647.
[26] N. Lester, B. Shuter, P. Abrams, Interpreting the von Bertalanffy Model of Somatic Growth in Fishes: The Cost of Reproduction, Proceedings of the Royal Society B: Biological Sciences, 271 (2004), 1625-1631.
[27] A. Hernandez-Llamas, D. Ratkowsky, Growth of Fishes, Crustaceans and Mollusks: Estimation of the von Bertalanffy, Logistic, Gompertz and Richards Curves and a New Growth Model, Marine Ecology Progress Series, 282 (2004), 237-244.
[28] L. von Bertalanffy, A Quantitative Theory of Organic Growth (Inquiries on Growth Laws. II), Human Biology, 10 (1938), 181-213.
[29] K. Sainsbury, Effect of Individual Variability on the von Bertalanffy Growth Equation, Canadian Journal of Fisheries and Aquatic Sciences, 37 (1980), 241- 247.
[30] P. Haaker, D. Parker, K. Barsky, C. Chun, Growth of Red Abalone, Haliotis rufescens (Swainson), at Johnson’s Lee Santa Rosa Island, California, Journal of Shellfish Research, 17 (1998), 747-753.
[31] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
[32] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the generalized cut functions of degree p + 1 by smooth hyper-log-logistic function, Dynamic Systems and Applications, 27 No. 4 (2018), 715-728.
[33] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[34] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-87794-2.