LIPSCHITZ STABILITY OF DELAY DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES

TitleLIPSCHITZ STABILITY OF DELAY DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES
Publication TypeJournal Article
Year of Publication2019
AuthorsHRISTOVA S., IVANOVA K.
JournalDynamic Systems and Applications
Volume28
Issue1
Start Page167
Pagination16
Date Published01/2019
ISSN1056-2176
AMS Subject Classification34A37, 34D20
Abstract

The Lipschitz stability for nonlinear differential equations with non-instantaneous impulses and variable delays is studied. The impulses start abruptly at some points and their action continue on given finite intervals. The delay is time variable. Some sufficient conditions for uniform Lipschitz stability and uniform global Lipschitz stability are obtained. Examples are given to illustrate the results.

PDFhttps://acadsol.eu/dsa/articles/28/1/10.pdf
DOI10.12732/dsa.v28i1.10
Refereed DesignationRefereed
Full Text

[1] Ravi Agarwal, D. O’Regan, S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, Appl. Math. Comput. (2015), doi: 10.1007/s12190-015-0961-z.
[2] D. D. Bainov, I.M. Stamova, Lipschitz stability of impulsive functional-differential equations, ANZIAM J., 42, 4 (2001), 504-514.
[3] F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential equations,J. Math. Anal. Appl., 113(1986), 562-577.
[4] M. Feckan, J.R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-istantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
[5] E. Hernandez, D. O’Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.
[6] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[7] Y. M. Liao, J. R. Wang, A note on stability of impulsive differential equations, Boundary Value Probl., 2014, 2014:67.
[8] Z. Lin, W. Wei, J. R. Wang, Existence and stability results for impulsive integrodifferential equatons, Facta Univer. (Nis), ser. Math. Inform., 29, No 2 (2014), 119-130.
[9] D.N. Pandey, S. Das, N. Sukavanam, Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses, Intern. J. Nonlinear Sci., 18, 2 (2014), 145-155.
[10] M. Pierri, D. O’Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743-6749.
[11] A. Sood, S. K. Srivastava, On stability of differential systems with noninstantaneous impulses, Math. Probl. Eng., 2015, 2015, Article ID 691687, 5 pages.
[12] J. R.Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 46, 1-2 (2014), 321-334.
[13] J. Wang, Z. Lin, A class of impulsive nonautonomous differential equations and Ulam − Hyers−Rassias stability, Math. Meth. Appl. Sci, 38, 5 (2015), 868-880.
[14] Z. Wang, Y. Zang Existence and stability of solutions to nonlinear impulsive differential equations in -normed space, Elect. J. Diff. Eq. 2014, 83 (2014), 1-10.