REFERENCES
[1] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Elsevier, New York (2006).
[2] Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Academic press (1998).
[3] Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 1063–1077 (2010).
[4] Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations, J. Integral Equations Appl. 25 557–586 (2013).
[5] Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[6] Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput. 257 344–354 (2015).
[7] Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal. 263 476–510 (2012).
[8] Wang, J.R., Fec̆kan, M., Zhou, Y.: On the new concept solutions and existence results for impulsive fractional evolutions, Dynam. Part. Differ. Eq. 8 (4) 345–361 (2011).
[9] Zhou, Y.: Basic Theory of Fractional Differential Equations, World Scientific (2014).
[10] Zhou, Y., Jiao, F.: Nonlocal cauchy problem for fractional evolution equations, Nonlinear Anal: RWA 11 (5) 4465–4475 (2010).
[11] Hernández, E., O’Regan, D., Balachandran, K.: Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators, Indag. Math. 24 (1) 68–82 (2013).
[12] Gou, H., Li, B.: Study on Sobolev type Hilfer fractional integro-differential equations with delay, J. Fixed Point Theory Appl. 20 (1) 44 (2018).
[13] Gou, H., Li, B.: Study a class of nonlinear fractional non-autonomous evolution equations with delay, J. Pseudo-Differ. Oper. 2 1–22 (2017).
[14] Wang, J.R.: Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput. 256 315–323 (2015).
[15] Li, K.: Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci. 38 (8) 1582–1591 (2015).
[16] Ahmed, H.M., El-Borai, M.M.: Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput. 331 182–189 (2018).
[17] El-Borai, Mahmoud M., El-Nadi, Khairia El-Said, et al.: Semigroups and some fractional stochastic integral equations, Int. J. Pure Appl. Math. Sci., 3 (1) 47–52 (2006).
[18] Ahmed, H.M.: On some fractional stochastic integrodifferential equations in Hilbert spaces, Int. J. Math. Math. Sci., 2009 (2009) 8. 568078.
[19] Ahmed, H.M.: Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theor. Probab., 26 (4) (2013).
[20] Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal. Theory Methods Appl., 81 70–86 (2013).
[21] Triggiani, R.: A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim. 15 (3) 407–411 (1977).
[22] Farahi, S., Guendouzi, T.: Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions, Result. Math. 65 501–521 (2014).
[23] Mahmudov, N.I.: Existence and approximate controllability of sobolev type fractional stochastic evolution equations, Bull. Pol. Acad. Sci., Tech. Sci. 62 205–215 (2014).
[24] Rajivganthi, C., Muthukumar, P., Priya, B.G.: Approximate controllability of fractional stochastic integro-differential equations with infinite delay of order 1 < α < 2, IMA J. Math. Control Inform. 33 685–699 (2016).
[25] Rajivganthi, C., Thiagu, K., Muthukumar, P. et al.: Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and poisson jumps, Appl. Math. 60 395–419 (2015).
[26] Sakthivel, R., Ganesh, R., Suganya, S.: Approximate controllability of fractional neutral stochastic system with infinite delay, Rep. Math. Phys. 70 291–311 (2012).
[27] Sakthivel, R., Suganya, S., Anthoni, S.M.: Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl. 63 660–668 (2012).
[28] Slama, A., Boudaoui, A.: Approximate controllability of fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay, Ann. Appl. Math. 31 127–139 (2015).
[29] Zang, Y., Li, J.: Approximate controllability of fractional impulsive neutral stochastic differential equations with nonlocal conditions, Bound. Value Probl. 2013 1–13 (2013).
[30] Zhang, X., Zhu, C., Yuan, C.: Approximate controllability of impulsive fractional stochastic differential equations with state-dependent delay, Adv. Difference Equ. 2015 (2015).
[31] Ahmed, Hamdy M., El-Borai, Mahmoud M.: Hilfer fractional stochastic integrodifferential equations, Appl. Math. Comput. 331 182–189 (2018).
[32] Kruse, R.: Strong and weak approximation of semilinear stochastic evolution equations, Lecture Notes in Mathematics, 2093. Springer, (2014).
[33] Kruse, R., Larsson, S., et al.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise, Electron. J. Probab. 17 1–19 (2012).
[34] Dauer, J., Mahmudov, N.I., Matar, M.: Approximate controllability of backward stochastic evolution equations in Hilbert spaces, J. Math. Anal. Appl. 323, 42–56 (2006).
[35] Dauer, J., Mahmudov, N.I.: Controllability of stochastic semilinear functional differential equations in Hilbert spaces, J. Math. Anal. Appl. 290 373–394 (2004).