STABILITY RESULTS FOR NONLINEAR FRACTIONAL ORDER h-DIFFERENCE SYSTEMS

TitleSTABILITY RESULTS FOR NONLINEAR FRACTIONAL ORDER h-DIFFERENCE SYSTEMS
Publication TypeJournal Article
Year of Publication2018
AuthorsLIU XIANG, JIA BAOGUO, ERBE LYNN, PETERSON ALLAN
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page609
Pagination20
Date Published07/2018
ISSN1056-2176
AMS Subject Classification39A11, 39A70
Abstract

This paper is concerned with the stability of the fractional order h-difference systems. The definition of Mittag-Leffler stability is introduced, and the sufficient conditions are presented by extending the Lyapunov direct method to such systems. Moreover, we weaken the restriction on Lyapunov function, the stability of the fractional order h-difference systems is established. Two numerical examples are given to illustrate our main results.

PDFhttps://acadsol.eu/dsa/articles/27/3/10.pdf
DOI10.12732/dsa.v27i3.10
Refereed DesignationRefereed
Full Text

REFERENCES

[1] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations. Elsevier, 2016.
[2] I. Podlubny, Fractional Differential Equations. Mathematics in Sciences and Engineering, Academic Press, San Diego, 1999.
[3] T. Kaczorek, Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, Heidelberg, 2011. 
[4] K. S. Miller, B. Ross, Fractional difference calculus. In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152.
[5] D. Mozyrska, E. Girejko, Overview of fractional h-difference operators. In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F. O. Speak, eds.), Operator Theory: Advances and Applications, Springer 2013, pp. 253-268. DOI:10.1007/978-3-0348-0516-2_14
[6] M. Wyrwas, E. Girejko, D. Mozyrska, E. Pawluszewicz, Stability of fractional difference systems with two orders. In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. DOI:10.1007/978-3-319-00933-9_4
[7] B. G. Jia, X. Liu, F. F. Du, M.Wang, The solution of a new Caputo-like fractional h-difference equation, Rocky Mountain J. Math. 2017, to appear.
[8] M. Wyrwas, E. Pawluszewicz, E. Girejko, Stability of nolinear h-difference systems with n fractional orders. Kybernetika, 51 (1) (2015), 112-136.
[9] D. Mozyrska, E. Girejko, M. Wyrwas, Comparison of h-difference fractional operators. In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. DOI:10.1007/978-3-319-00933-9_17
[10] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Discrete time fractional variational problems, Signal Processing, 91 (2011), 513-524. DOI: 10.1016/j.sigpro.201 0.05.001
[11] D. Mozyrska, M. Wyrwas, The Z-transform method and delta type fractional difference operators. Discret. Dyn. Nat. Soc., 2015 (2015), Article ID 852734, 12 pages.
[12] S.Momani, S. Hadid, Lyapunov stability solutions of fractional integrodifferential equations. Int. J. Math. Math. Sci., 47 (2004), 2503-2507.
[13] L. G. Zhang, J. M. Li, G. P. Chen, Extension of Lyapunov second method by fractional calculus. Pure Appl. Math., 3 (2005), 1008-5513.
[14] V. E. Tarasov, Fractional stability, 2007. Available online: http://arxiv.org/abs/0711.2117v1.
[15] D. Matignon, Stability properties for generalized fractional differential systems. ESAIM Proc., 5 (1998), 145-158. 
[16] Y. Li, Y. Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 45 (2009), 1965-1969. DOI:10.1140/epjst/e20 11-01379-1
[17] Y. Li, Y. Q. chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl., 59 (2010), 1810-1821. DOI:10.1016/j.camwa.2009.08.019
[18] J. M. Yu, H. Hu, S. B. Zhou, X. R. Lin, Generalized Mittag-Lefler stability of multi-variables fractional order nonlinear systems. Automatica, 49 (2013), 1798-1803.
[19] F. R. Zhang, C. P. Li, Y. Q. Chen, Asymptotical stability of nolinear fractional differential systems with Caputo derivative. Internat. J. Differ. Equ., Volume 2011, Article ID 635165, 12 pages.
[20] M. Wyrwas, D. Mozyrska, On Mittag-Leffler stability of fractional order difference systems. In: Advances in Modeling and Control of Non-integer order systems, (K. J. Latawiec et al. eds.), Lect. Notes Electr. Engrg. 320, Springer International Publishing, Switzerland 2015, pp. 209-220. DOI:10.1007/978-3-319-09900-2_19
[21] F. Jarad, T. Abdeljawad, D. Baleanu, K. Bi¸cen, On the stability of some discrete fractional nonautonomous systems. Abstr. Appl. Anal., Volume 2012, Article ID 476581, 9 pages. doi:10.1155/2012/476581