INTERPOLATED FINITE ELEMENT METHOD FOR SOME FOURTH-ORDER ELLIPTIC PROBLEMS

TitleINTERPOLATED FINITE ELEMENT METHOD FOR SOME FOURTH-ORDER ELLIPTIC PROBLEMS
Publication TypeJournal Article
Year of Publication2018
AuthorsANDREEV ANDREY, RACHEVA MILENA
JournalDynamic Systems and Applications
Volume27
Issue2
Start Page423
Pagination22
Date Published2018
ISSN1056-2176
AMS Subject Classification65D10, 65N12, 65N15, 65N25, 65N30
Abstract

We introduce nonstandard interpolated finite elements providing better accuracy for a fourth-order elliptic boundary value problems, as well as to the biharmonic eigenvalue problems. The term ”ultraconvergence” indicates that the convergence rate is at least two orders higher than the optimal global rate. This method is a variant of a postprocessing procedure when the known finite element solution is used. Moreover, a posteriori error estimates of global ultraconvergent type are derived. The presented approach is applicable for the general rectangular finite element meshes. Some numerical results illustrate the efficiency of the proposed algorithm.

PDFhttps://acadsol.eu/dsa/articles/27/2/13.pdf
DOI10.12732/dsa.v27i2.13
Refereed DesignationRefereed
Full Text

REFERENCES
[1] Ainswort M. and Oden J.T., A Posteriori Error Estimation in Finite Element
Analysis. Wiley Interscience, New York, 2000.
[2] A.B. Andreev, Supercloseness between the elliptic projection and the approximate
eigenfunction and its application to a postprocessing of finite element eigenvalue
problems, LNCS 3401, Springer-Verlag, 100-107, 2005.
[3] A. B. Andreev, T. T. Dimov and M. R. Racheva, One-dimensional patch-recovery
finite element method for fourth-order elliptic problems, LNCS 3401, SpringerVerlag,
110 117, 2004.
[4] I. Babuˇska, J. Osborn, Eigenvalue Problems, Handbook of Numer. Anal., Vol.II,
North-Holland, Amsterdam, 1991.
[5] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland,
Amsterdam, New York, Oxford, 1978.
[6] Li B., Zhang Z., Analysis of a class of superconvergence patch-recovery techniques
for linear and bilinear finite elements, Numer. Methods for Partial Differential
Equations 15 (1999), 151-167.
[7] Liu Q., Yan N. and Zhou A., A rectangular test for interpolated finite elements,
Proceedings of Systems Science & Systems Engineering, Culture Publish Co.,
1991, 217-229.
[8] G. Strang, G.J. Fix, An Analysis of the Finite Elemente Method, Prentice-Hall,
Englewood Cliffs, NJ, 1973.
[9] Thomee V., Galerkin Finite Element Methods for Parabolic Problems, Springer, 1997.
[10] T.D. Todorov and M.R. Racheva, Applications of a two-level method for isoparametric
iterative scheme for solving elliptic problems, Notes on Numerical Fluid
Mechanics, Springer-Verlag, Vol. 73, 196-203, 2000.
[11] Verf¨urth T., A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques,
Teubner Skripten zur Numerik, B. G. Teubner, Stuttgart, 1995.
[12] L.B. Wahlbin, Superconvergence in Galerkin FEM, Springer-Verlag, Berlin, 1995.
[13] Wang J., A superconvergence analysis for finite element solutions by the leastsquares
surface fitting on irregular meshes for smooth problems, J. Math. Study
33(3) (2000).
[14] Zhimin Zhang, Runchang Lin, Ultraconvergence of ZZ patch recovery at mesh
symmetry points, Numer. Math. (2003) 95, 781-801.
[15] Zhu Q. and Zhao Q., SPR technique and finite element correction, Numer. Math.
(2003) 96, 185-196.
[16] O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch-recovery and a posteriori
error estimates. Part 1: The recovery technique, Int. J. Numer. Methods,
Eng., 33, 1331-1364 (1992).
[17] O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch-recovery and a posteriori
error estimates. Part 2: Error estimates and adaptivity, Int. J. Numer.
Methods, Eng., 33, 1365-1382 (1992).