PRODUCTION PLANNING AND ENGINEERING PROCESS IMPROVEMENT

TitlePRODUCTION PLANNING AND ENGINEERING PROCESS IMPROVEMENT
Publication TypeJournal Article
Year of Publication2018
AuthorsMEDHIN, NG, UZSOY, REHA
Secondary TitleCommunications in Applied Analysis
Volume22
Issue4
Start Page583
Pagination14
Date Published10/2018
Type of Workscientific: mathematics
ISSN1083-2564
AMSengineering process, optimal control model, structural results
Abstract

The authors present an optimal control model to allocated equipment capacity between production that generates immediate revenue and engineering process improvement activity that results in increased future output. The benefit of engineering activity is modeled as a concave function of the total number of engineering lots processed to date, while the production facility is represented by a nonlinear clearing function capturing the nonlinear relationship between resource utilization and cycle time. We analyze the model to develop structural results and illustrates its behavior with numerical experiments.

URLhttps://acadsol.eu/en/articles/22/4/6.pdf
DOI10.12732/caa.v22i4.6
Refereed DesignationRefereed
Full Text

REFERENCES

[1] Amir Ahmadi-Javid, Roland Malhame, Optimal control of a multistate failure-prone manufacturing system under a conditional value-at-risk cost criterion, JOTA, 167 (2015), 716-732.
[2] S.A. Attiya, V. Azhmyakov, J. Raisch, State jump optimization for a class of hybrid autonomous Systems, in: Proceedings of the 2007 IEEE Multiconference on Systems and Control, Singapore, 2007, 1408-1413.
[3] V. Azhmyakov, S.A. Attiya, J. Raisch, On the maximum principle for the impulsive hybrid system, Lec. Notes in Computer Science, Vol. 4981, Springer, Berlin, 2008, 30-42.
[4] V. Azhmyakov, V. G.Boltyanski, A. Poznyak, Optimal control of impulsive hybrid systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1089-1097.
[5] L.D. Berkovitz, N.G. Medhin, Nonlinear Optimal Control Theory, CRC Press, 2012.
[6] M.E. Brandt, G. Chen, Feedback control of a biodynamical model of HIV-1, IEEE Tans. Biomed. Eng., 48, No. 7 (2001), 754-758.
[7] M.S. Branicky, V.S. Borkar, S.K. Mitter, A unified framework for hybrid control: Model and optimal control theory, IEEE Transactions on Automatic Control, 43 (1998), 31-45.
[8] Y.S. Ding, Z. Wang, Haiping Ye, Optimal control of a fractional-order HIV-immune system with memory, Vol. 20, No. 3 (2012), 763-769.
[9] K. Ganesh, M. Punniyamoorthyy, Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing, The International Jour. of Advanced Manufacturing Technology, 26, No. 1-2 (2005), 148-154.
[10] M. Garavello, B. Piccoli, Hybrid necessary principle, SIAM Jour. on Cpntrol and Optimization, 43 (2005), 1867-1887.
[11] E.G. Gilbert, G.A. Hardy, A class of fixed-time fuel optimal impulsive control problems and an efficient algorithm for their solution, IEEE Trans. Autom. Control AC-16 (1971).
[12] W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of selfsimilar protential dynamics, Biophys J., 68 (1995), 46-53.
[13] S. Kim, R. Uzsoy, Integrated planning of production and engineering process improvement, IEEE Transaction on Semiconductor Manufacturing, 21 (2008), NO.3, 2008.
[14] D.E. Kirk, Optimal Control Theory, An Introduction, Prentice-Hall, INC., 1970.
[15] J.C. Luo, E.B. Lee, Time-optimal control of the swing using impulsive control actions, In: Proceedings of American Control Conference (1998), 200-204.
[16] L.S. Lasdon, S.K. Mitter, A.D. Warren, The conjugate gradient method for optimal control problems, IEEE Trans. on Aut. Control, AC-12, No. 2 (1967), 132-168.
[17] Aniela Maria, Christopher Mattson, Amir Ismail-Yahaya, Achille Messac, Linear physical programming for production planning optimization, Eng. Opt., 35, No. 1 (2003), 19-37.
[18] N.G. Medhin, Wei Wan, Multi-new product competition in duopoly: A differential game analysis, Dynamic Sys. Applic., 18 (2009), 161-178.
[19] Achille Messac, W. Batayneh, Amir Ismail-Yahaya, Production planning optimization with physical programming, Eng. Opt., 34, No. 4 (2002), 323-340.
[20] M.S. Shaikh, P.E. Caines, On the hybrid optimal control problem: Theory and algorithms, IEEE Transaction on Automatic Control, 52 (2007), 1587-1683.
[21] G. N. Silva, R. B. Vinter, Necessary conditions for optimal impulsive control problems, In: Proceedings of the 36th Conf. on Decision Control, 2086-2090.
[22] S. Wang, Second-order necessary and sufficient conditions in multiobjectve programming, Numer. Func. Anal. and Optimiz., 12, No-s: 1-2 (1991), 237-252.
[23] C.Z. Wu, K.L. Teo, Yi Zhao, W.Y. Yan, An optimal control problem involving impulsive integrodifferential systems, Optimization Methods and Software, 22. No. 3 (2007), 531-549.
[24] T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, Volume 272, Springer, Berlin, 2001.