REFERENCES

[1] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Universitext, Springer, 2011.

[2] D. Bouafia, T. Moussaoui, and D, O’Regan Existence of solutions for a second order problem on the half-line via Ekeland’s variational principle, Discuss. Math. Differ. Incl. Control Optim. 36 (2016), 131-140.

[3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.

[4] H. Chen, Z. He and J. Li, Multiplicity of solutions for impulsive differential equation on the half-line via variational methods, Bound. Value Probl. 14 (2016), doi:10.1186/s13661-016-0524-8.

[5] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.

[6] B. Dai and D. Zhang, The Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Results. Math. 63 (2013), 135-149.

[7] S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theory Differ. Equ. 2006 (2006), No. 4, p. 1-19.

[8] S. Djebali, O. Saifi, and S. Zahar, Singular boundary value problems with variable coefficients on the positive half-line, Electron. J. Differential Equations 2013 (2013), No. 73, 1-18.

[9] S. Djebali, O. Saifi, and S. Zahar, Upper and lower solutions for BVPs on the half-line with variable coefficient and derivative depending nonlinearity, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), No. 14, p. 1-18.

[10] S. Djebali and S. Zahar, Bounded solutions for a derivative dependent boundary value problem on the half-line, Dynam. Systems Appl. 19 (2010), 545-556.

[11] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47, (1974), 324-353.

[12] O. Frites, T. Moussaoui, and D. O’Regan, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (2015), 395- 407.

[13] M. Galewski, T. Moussaoui, and I. Soufi, On the existence of solutions for a boundary value problem on the half-line, Electron. J. Qual. Theory Differ. Equ. 2018 (2018), No. 12, 1-12.

[14] S. Heidarkhani, M. Ferrara, A. Salari, and G. Caristi, Multiple solutions for a class of perturbed second-order differential equations with impulses, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), No. 74.

[15] S. Heidarkhani and J. Henderson, Critical point approaches to quasilinear second order differential equations depending on a parameter, Topol. Methods Nonlinear Anal., 44 (2014), 177-197.

[16] F. Li, Z. Liang, and Q. Zhang, Existence of solutions to a class of nonlinear second order two-point boundary value problems, J. Math. Anal. Appl. 312 (2005), 357-373.

[17] H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett. 19 (2006), 1000-1006.

[18] D. O’Regan, B. Yan, and R. P. Agarwal, Nonlinear boundary value problems on semi-infinite intervals using weighted spaces: An upper and lower solution approach, Positivity 11 (2007) 171-189.

[19] N. S. Papageorgiou and S. K. Yiallourou, Handbook of Applied Analysis, Springer, New-York, 2009.

[20] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 3 (1986), 77-109.

[21] Y. Zhao, X. Wang, and X. Liu, New results for perturbed second-order impulsive differential equation on the half-line, Bound. Value Probl. 2014, (2014), No. 246.