**REFERENCES**

[1] M. Benchora, S. Hamani, S. K. Ntouyas, Boundary value problems for

differential equations with fractional order and nonlocal conditions, Nonlinear

Anal., 71, 2391-2396 (2009).

[2] M. Caputo, Linear models of dissipition whose Q is almost independent,

II, Geophy. J. Roy. Astronom., 13 (1967), 529-539.

[3] Lokenath Debnath, Dambaru Bhatta, Integral Transforms and Their Applications,

Second Edition, Taylor and Francis Group, New York, 2007.

[4] Z. Denton, A. S. Vatsala, Monotone iterative technique for finite systems

of nonlinear Riemann-Liouville fractional differential equations, Opus.

Math., 31, No. 3 (2011), 327-339.

[5] D. B. Dhaigude, J. A. Nanware and V. R. Nikam, Monotone technique for

system of Caputo fractional differential equations with periodic boundary

conditions, Dynamics of Continuous, Discrete and Impulsive Systems, 19,

No. 5a (2012), 575-584.

[6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications

of Fractional Differential Equations, North Holland Mathematical Studies

Vol. 204. Elsevier(North-Holland) Sciences Publishers, Amsterdam, 2006.

[7] V. Lakshmikantham, A. S. Vatsala, Theory of fractional differential equations

and applications, Commun. Appl. Anal., 11 (2007), 395-402.

[8] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential

equations and applications, Nonl. Anal., 69, No. 8 (2008), 2677-2682.

[9] V. Lakshmikantham, A. S. Vatsala, General uniqueness and monotone

iterative technique for fractional differential equations, Appl. Math. Lett.,

21, No. 8 (2008), 828-834.

[10] V. Lakshmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic

Systems, Cambridge Scientific Publishers, Cambridge, UK, 2009.

[11] F. A. McRae, Monotone iterative technique and existence results for fractional

differential equations, Nonl. Anal., 71, No. 12 (2009), 6093-6096.

[12] F. A. McRae, Monotone method for periodic boundary value problems of

Caputo fractional differential equations, Commun. Appl. Anal., 14, No.

1 (2010), 73-80.

[13] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional

Differential Equations, Eiley, New York, 1993.

[14] J. A. Nanware, Existence and uniqueness of solution of fractional differential

equations via monotone method, Bull. Marathwada Maths. Society,

14, No. 1 (2013), 39-55.

[15] J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solution of

differential equations of fractional order with integral boundary conditions,

J. Nonl. Sci. Appl., 7 (2014), 246-254.

[16] J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solution of

Riemann-Liouville fractional differential equations with integral boundary

conditions, Int. Jour. Nonl. Sci., 14, No. 4 (2012), 410-415.

[17] J. A. Nanware, D. B. Dhaigude, Boundary value problems for differential

equations of non-integer order involving Caputo fractional derivative,

Adv. Stu. Contem. Math., 24, No. 3 (2014), 369-376.

[18] J. A. Nanware, D. B. Dhaigude, Monotone technique for finite system

of Caputo fractional differential equations with periodic boundary conditions,

Dyn. Conti., Disc. Impul. Sys., 22, No. 1 (2015), 13-23.

[19] J. A. Nanware, N. B. Jadhav, D. B. Dhaigude, Monotone iterative

technique for finite system of Riemann-Liouville fractional differential

equations with integral boundary conditions, International Conference

of Mathematical Sciences, Elsevier (2014), 235-238.

[20] J. A. Nanware, D. B. Dhaigude, Monotone iterative scheme for system of

Riemann-Liouville fractional differential equations with integral boundary

conditions, Math. Modelling Scien. Computation, Springer-Verlag, 283

(2012), 395-402.

[21] I. Podlubny, Fractional Differential Equations, Academic Press, San

Diego, 1999.

[22] J. D. Ramirez, A. S. Vatsala, Monotone iterative technique for fractional

differential equations with periodic boundary conditions, Opuscula Mathematica,

29, No. 3 (2009), 289-304.

[23] T. Wang, F. Xie, Existence and uniqueness of fractional differential equations

with integral boundary conditions, The J. Nonl. Sci. Appl., 1, No.

4 (2009), 206-212.

[24] Zhongli Wei, Qingdong Li, Junling Che, Initial value problems for fractional

differential equations involving Riemann-Liouville sequential fractional

derivative, J. Math. Anal. Appl., 367, No. 1 (2010), 260-272.

[25] Zhongli Wei, Wei Dong, Periodic boundary value problems for RiemannLiouville

sequential fractional differential equations, EJQTDE, 87 (2011), 1-13.

[26] S. Zhang, Monotone iterative method for initial value problems involving

Riemann-Liouville fractional derivatives, Nonl. Anal., 71 (2009), 2087-

2093.