SYMmetric functions for
families of Generating functions

Ali Boussayoud1, Abdelhamid Abderrezzak2,
and Philip B. Zhang3
1LMAM Laboratory and Department of Mathematics
Mohamed Seddik Ben Yahia University
Jijel, Algeria
2University of Paris 7, LITP
Place Jussieu, Paris cedex 05, France
3College of Mathematical Science
Tianjin Normal University
Tianjin 300387, P.R. China

Abstract: In this paper we show how the action of the symmetrizing operators
\(L^k_{\epsilon_1, \epsilon_2} \) to the series \(\sum_{j=0}^{\infty} S_j (-A) e^{\epsilon_1 j} z^j \) allows the obtention of an alternative approach
for the determination of Fibonacci numbers and Chebychev polynomials of the first and
second kind.

AMS Subject Classification: 05E05, 11B39
Key Words: symmetrizing operator, Chebychev polynomials, Fibonacci numbers

Received: November 12, 2017; Accepted: January 12, 2018;
Published: January 16, 2018; doi: 10.12732/npsc.v26i1.3

1. Introduction

Let \(F_n, U_n \) and \(T_n \) be the \(n \)th Fibonacci number, Chebyshev polynomials of the first
kind and the second kind, respectively. Foata [12] used combinatorial techniques to
give generating functions of squared Fibonacci numbers \(\sum_{j=0}^{\infty} F^2_j z^j \), and products of
Chebyshev polynomials of first and second kinds. Foata also obtained the following
series
\[\sum_{j=0}^{\infty} F_j z^j, \sum_{j=0}^{\infty} T_j z^j, \sum_{j=0}^{\infty} U_j z^j. \]

Lascaux [14] later found an identity of Ramanujan by means of the divided differences.
Boussayoud, Kerada and Abderrezzak [11] have recovered the generating functions
\[\sum_{j=0}^{\infty} F_j z^j, \sum_{j=0}^{\infty} T_j z^j, \sum_{j=0}^{\infty} U_j z^j, \]
by using the definition of a symmetric operator \(L_{e_1 e_2}^k \). Since then, more generating
functions had been rediscovered [8, 10],
\[\sum_{j=0}^{\infty} F_j z^j, \sum_{j=0}^{\infty} T_j z^j, \sum_{j=0}^{\infty} U_j z^j, \sum_{j=0}^{\infty} F_j^2 z^j, \sum_{j=0}^{\infty} T_j z^j, \sum_{j=0}^{\infty} T_j U_j z^j. \]

In this paper, we shall combine all these results in a unified way. All the results
can be treated as special cases of the following theorem.

Theorem 1. Given an alphabet set \(A = \{a_1, a_2, \ldots\} \), we have
\[\sum_{j=0}^{\infty} S_j(A) L_{e_1 e_2}^k (e_1^j) z^j = \]
\[\frac{\sum_{j=0}^{k-1} S_j(-A) e_1^j e_2^j L_{e_1 e_2}^k \left(\frac{1}{e_1^j} \right) z^j - e_1^k e_2^{k+1} \sum_{j=0}^{\infty} S_{j+k+1}(-A) L_{e_1 e_2}^k (e_1^j) z^j}{\left(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j \right) \left(\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j \right)}. \] (1)

Theorem 1 generalizes several results published in [4, 5, 6, 7, 8, 9, 10, 11, 12]. In
addition, we also find the generating function of the Stirling numbers of the second
kind based on [2].

2. PRELIMINARIES

In the paper we need a lot of known results, quoted here for convenience to the reader.

Definition 2 ([1]). Given two sets of indeterminate \(A \) and \(B \) (called alphabets), we
define \(S_j(A - B) \) as follows:
\[\frac{\prod_{b \in B}(1 - zb)}{\prod_{a \in A}(1 - za)} = \sum_{j=0}^{\infty} S_j(A - B) z^j, \] (2)
with \(S_j(A - B) = 0 \) for \(j < 0 \).
All the alphabets considered in this article are finite.

Remarque 3. By taking $A = 0$ in (2.1), we obtain
\[
\prod_{b \in B} (1 - zb) = \sum_{j=0}^{\infty} S_j(-B) z^j.
\]

Proposition 4 ([2]). Considering successively the case of $A = \Phi$ or $B = \Phi$, we can derive the following factorization
\[
\sum_{j=0}^{\infty} S_j(A - B) z^j = \sum_{j=0}^{\infty} S_j(A) z^j \sum_{j=0}^{\infty} S_j(-B) z^j.
\]

Thus,
\[
S_n(A - B) = \sum_{k=0}^{n} S_{n-k}(A) S_k(-B).
\]

The summation is in fact limited to a finite number of nonzero terms. In particular, we have
\[
\prod_{b \in B} (x - b) = S_n(x - B) = S_0(-B)x^n + S_1(-B)x^{n-1} + S_2(-B)x^{n-2} + \cdots + S_n(-B),
\]

where $S_j(-B)$ are the coefficients of polynomials $S_n(x - B)$ for $0 < j < n$. We note that $S_j(-B) = 0$ for $j > n$.

Thus, the special case of $B = \{1, 1, 1, \ldots, 1\}$ gives the two binomial coefficients
\[
S_j(-n) = (-1)^j \binom{n}{j} \quad \text{and} \quad S_j(n) = \binom{n+j-1}{j}.
\]

Definition 5 ([16]). Given a function g on \mathbb{R}^n, the divided difference operator is defined as follows:
\[
\partial_{x_i, x_{i+1}}(g) = \frac{g(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) - g(x_1, \ldots, x_{i-1}, x_{i+1}, x_i, x_{i+2} \ldots, x_n)}{x_i - x_{i+1}}.
\]

Definition 6 ([8]). Given a function $g(e_1, e_2)$, the symmetrizing operator $L^k_{e_1 e_2}$ is defined by
\[
L^k_{e_1 e_2} g(e_1, e_2) = \frac{e_1^k g(e_1, e_2) - e_2^k g(e_2, e_1)}{e_1 - e_2}.
\]

Proposition 7 ([11, Proposition 14.1]). Given an alphabet $E = \{e_1, e_2\}$, the operator $L^k_{e_1 e_2}$ satisfies the following formula
\[
L^k_{e_1 e_2} f(e_1) = S_{k-1}(e_1 + e_2)f(e_1) + e_2^k \partial_{e_1 e_2} f(e_1), \quad \text{for all } k \in \mathbb{N}.
\]
3. THE PROOF OF THEOREM 1

In this section, we present a proof of Theorem 1.

Proof of Theorem 1. Let

$$f(e_1) = \frac{1}{\prod_{a \in A} (1 - ae_1 z)}.$$

On one hand, since

$$f(e_1) = \sum_{j=0}^{\infty} S_j(A) e_1^j z^j,$$

we have that

$$L^{k}_{\varepsilon_1, \varepsilon_2} f(e_1) = L_{\varepsilon_1, \varepsilon_2}^k \left(\sum_{j=0}^{\infty} S_j(A) e_1^j z^j \right)$$

$$= \sum_{j=0}^{\infty} S_j(A) \left(\frac{e_1^{j+k} - e_2^{j+k}}{e_1 - e_2} \right) z^j$$

$$= \sum_{j=0}^{\infty} S_j(A) L_{\varepsilon_1, \varepsilon_2}^k (e_1^j) z^j,$$

which is the left hand side of (1).

On the other hand, since

$$f(e_1) = \sum_{j=0}^{\infty} S_j(-A) e_1^j z^j,$$

we have that

$$\partial_{\varepsilon_1, \varepsilon_2} f(e_1) = \frac{1}{e_1 - e_2} \left(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j \right) - \frac{1}{\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j}$$

$$= \frac{\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j}{(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j)} - \frac{\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j}{(\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j)}$$

$$= -\frac{\sum_{j=0}^{\infty} S_j(-A) S_{j-1}(e_1 + e_2) z^j}{(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j)(\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j)}.$$

By Proposition 7, it follows that

$$L^{k}_{\varepsilon_1, \varepsilon_2} f(e_1) = S_{k-1}(e_1 + e_2) f(e_1) + e_2^k \partial_{\varepsilon_1, \varepsilon_2} f(e_1)$$

$$= \frac{S_{k-1}(e_1 + e_2)}{\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j} - \frac{\sum_{j=0}^{\infty} S_j(-A) S_{j-1}(e_1 + e_2) z^j}{(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j)(\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j)}.$$
FAMILIES OF GENERATING FUNCTIONS

\[\sum_{j=0}^{\infty} S_j(-A) \left(e_2^j S_{k-1}(e_1 + e_2) - e_2^j S_{j-1}(e_1 + e_2) \right) z^j = \frac{\sum_{j=0}^{\infty} S_j(-A) (e_1^j z^j)}{\left(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j \right) \left(\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j \right)} \]

Hence, we have that

\[L_{e_1e_2}^k f(e_1) = \sum_{j=0}^{\infty} S_j(-A) \left(e_2^j S_{k-1}(e_1 + e_2) - e_2^j S_{j-1}(e_1 + e_2) \right) z^j \]

which is the right hand side of (1). This completes the proof. \qed

4. APPLICATIONS TO THE GENERATING FUNCTIONS

In this section, we attempt to give results for some well-known generating functions. In fact, we will use Theorem 1 to derive Fibonacci numbers and Chebychev polynomials of second kind. Moreover, the generating functions for some special cases of Fibonacci numbers and Chebychev polynomials are given.

4.1. THE CASE \(A = \{a_1\} \)

If \(k = 1 \) and \(A = \{a_1\} \), the next result gives a generating function [7, 11].

Corollaire 8. Given two alphabets \(E = \{e_1, e_2\} \) and \(A = \{a_1\} \), we have

\[\sum_{j=0}^{\infty} a_1^j S_j(e_1 + e_2) z^j = \frac{1}{(1-a_1e_1 z)(1-a_1e_2 z)}. \] \hspace{1cm} (3)

If \(k = 2 \) and \(A = \{a_1\} \), the next result gives a generating function for Lucas numbers.

Corollaire 9. Given two alphabets \(E = \{e_1, e_2\} \) and \(A = \{a_1\} \), we have

\[\sum_{j=0}^{\infty} a_1^j S_{j+1}(e_1 + e_2) z^j = \frac{e_1 + e_2 - e_1 e_2 a_1 z}{(1-a_1 e_1 z)(1-a_1 e_2 z)}. \] \hspace{1cm} (4)
If \(a_1 = 1 \), replacing \(e_2 \) by \((-e_2)\) in (3) and (4), we obtain

\[
\sum_{j=0}^{\infty} S_j (e_1 + [-e_2]) z^j = \frac{1}{(1 - ze_1)(1 + ze_2)},
\]

(5)

\[
\sum_{j=0}^{\infty} S_{j+1}(e_1 + [-e_2]) z^j = \frac{e_1 - e_2 + e_1e_2z}{(1 - ze_1)(1 + ze_2)}.
\]

(6)

Choosing \(e_1 \) and \(e_2 \) such that

\[
\begin{cases}
 e_1 e_2 = 1, \\
 e_1 - e_2 = 1,
\end{cases}
\]

and substituting in (5) and (6), we end up with

\[
\sum_{j=0}^{\infty} S_j (e_1 + [-e_2]) z^j = \frac{1}{1 - z - z^2},
\]

(7)

\[
\sum_{j=0}^{\infty} S_{j+1}(e_1 + [-e_2]) z^j = \frac{1 + z}{1 - z - z^2},
\]

(8)

which were given by Boussayoud et al. \[7, 8, 11\].

\textbf{Remarque 10.} For all \(j \in \mathbb{N} \),

\[
S_{j+1}(e_1 + [-e_2]) = S_j(e_1 + [-e_2]) + S_{j-1}(e_1 + [-e_2]).
\]

Multiplying the equation (7) by 3 and subtracting it from (8), we obtain

\[
\sum_{j=0}^{\infty} (3S_j(e_1 + [-e_2]) - S_{j+1}(e_1 + [-e_2])) z^j = \frac{2 - z}{1 - z - z^2},
\]

which represents a generating function for Lucas numbers such that

\[
L_j = 3S_j(e_1 + [-e_2]) - S_{j+1}(e_1 + [-e_2]).
\]

On the other hand, when replacing \(e_1 \) and \(e_2 \) by \(2e_1 \) and \((-2e_2)\) respectively in (5) and (6), and under the condition \(4e_1e_2 = -1 \), we obtain, for \(y = e_1 - e_2 \), that

\[
\sum_{j=0}^{\infty} S_j (2e_1 + [-2e_2]) z^j = \frac{1}{1 - 2yz + z^2},
\]

(9)

\[
\sum_{j=0}^{\infty} S_{j+1}(2e_1 + [-2e_2]) z^j = \frac{2y - z}{1 - 2yz + z^2},
\]

(10)

where (9) represents a generating function for Chebychev polynomials of the second kind \[7, 8, 11\], and (10) represents a new generating function.
Remarque 11. For all \(j \in \mathbb{N} \):

\[
S_{j+1}(2e_1 + [-2e_2]) = 2yS_j(2e_1 + [-2e_2]) - S_{j-1}(2e_1 + [2e_2]).
\]

Moreover, we deduce from (9) that

\[
\sum_{j=0}^{\infty} (S_j(2e_1 + [-2e_2]) - yS_{j-1}(2e_1 + [-2e_2])) z^j = \frac{1 - yz}{1 - 2yz + z^2},
\]

which represents a generating function for Chebyshev polynomials of the first kind [7, 8, 11], such that

\[
T_j(y) = S_j(2e_1 + [-2e_2]) - yS_{j-1}(2e_1 + [-2e_2]).
\]

4.2. THE CASE \(E = \{e_1, e_2\}, A = \{a_1, a_2\} \)

If \(k = 1 \) and \(A = \{a_1, a_2\} \), the next result gives a generating function [8, 10, 11, 12].

Corollaire 12 ([10, Theorem 4]). Given two alphabets \(E = \{e_1, e_2\} \) and \(A = \{a_1, a_2\} \), then

\[
\sum_{j=0}^{\infty} S_j(A)S_j(e_1 + e_2)z^j = \frac{1 - a_1a_2e_1e_2z^2}{\left(\sum_{j=0}^{\infty} S_j(-A)e_1^jz^j\right)\left(\sum_{j=0}^{\infty} S_j(-A)e_2^jz^j\right)}.
\]

If \(k = 2 \) and \(A = \{a_1, a_2\} \), the next result gives a new generating function for Stirling numbers of the second kind.

Corollaire 13. Given two alphabets \(E = \{e_1, e_2\} \) and \(A = \{a_1, a_2\} \), we have

\[
\sum_{j=0}^{\infty} L_{a_1a_2}^k(a_1)S_{j+1}(e_1 + e_2)z^j = \frac{e_1 + e_2 - e_1e_2(a_1 + a_2)z}{\left(\sum_{j=0}^{\infty} S_j(-A)e_1^jz^j\right)\left(\sum_{j=0}^{\infty} S_j(-A)e_2^jz^j\right)}.
\]

Case 1: Substituting \(e_1 = a_1 = 1, e_2 = x \) and \(a_2 = y \) in (11), we obtain the following identity of Ramanujan [7, 9, 14]:

\[
\sum_{j=0}^{\infty} S_j(1 + x)S_j(1 + y)z^j = \frac{1 - xzy^2}{(1 - z)(1 - zx)(1 - zy)(1 - zxy)}.
\]

Case 2: Replacing \(e_2 \) by \((-e_2)\) and \(a_2 \) by \((-a_2)\) in (12) yields

\[
\sum_{j=0}^{\infty} S_j(a_1 + [-a_2])S_j(e_1 + [-e_2])z^j
\]

\[
= \frac{1 - e_1e_2a_1a_2z^2}{(1 - a_1e_1z)(1 + a_2e_1z)(1 + a_1e_2z)(1 - a_2e_2z)}.
\]
This case consists of three related parts.

Firstly, the substitutions of

\[
\begin{cases}
 a_1 - a_2 = 1, \\
 a_1 a_2 = 1,
\end{cases}
\quad \text{and} \quad
\begin{cases}
 e_1 - e_2 = 1, \\
 e_1 e_2 = 1,
\end{cases}
\]

in (13) give

\[
\sum_{j=0}^{\infty} S_j (a_1 + [-a_2]) S_j (e_1 + [-e_2]) z^j = \frac{1 - z^2}{1 - z - 4z^2 - z^3 + z^4}
\]

\[
= \sum_{j=0}^{\infty} F_j^2 z^j,
\]

which represents a generating function for squared Fibonacci numbers [7, 10, 12], such that

\[
F_j^2 = S_j(a_1 + [-a_2]) S_j(e_1 + [-e_2]).
\]

Secondly, making the substitution of

\[
\begin{cases}
 e_1 - e_2 = 1, \\
 e_1 e_2 = 1, \\
 4a_1 a_2 = -1,
\end{cases}
\]

in (13) and setting for ease on notations \(x = a_1 - a_2 \), we reach

\[
\sum_{j=0}^{\infty} F_j U_j (x) z^j = \frac{1 + z^2}{1 - 2xz + (3 - 4x^2)z^2 + 2xz^3 + z^4},
\]

which corresponds to a generating function for the product of Fibonacci numbers and Chebychev polynomials of the second kind [7, 10].

Thirdly, recall that for \(y = e_1 - e_2 \), the substitution of

\[
\begin{cases}
 4e_1 e_2 = -1, \\
 4a_1 a_2 = -1,
\end{cases}
\]

in (13) results in

\[
\sum_{j=0}^{\infty} U_j (y) U_j (x) z^j = \frac{1 - z^2}{1 - 4yxz + (4x^2 + 4y^2 - 2)z^2 - 4yxz^3 + z^4},
\]

which represents a generating function for Chebychev polynomials of the second kind [7, 9, 10].

According to formulas (9) and (11), and based on the fact that

\[
S_{j-1}(2a_1 + [-2a_2]) = \frac{(2a_1)^j - (-2a_2)^j}{2a_1 + 2a_2},
\]
we have

\[
\sum_{j=0}^{\infty} U_j(y) T_j(x) z^j = \frac{1 - 2y x z + (2x^2 - 1)z^2}{1 - 4y x z + (4x^2 + 4y^2 - 2)z^2 - 4y x z^3 + z^4},
\]

which represents a generating function for the combined Chebychev polynomials of the second and first kinds.

Finally, we have

\[
\sum_{j=0}^{\infty} T_j(y) T_j(x) z^j = \frac{1 - 3y x z + (2x^2 + 2y^2 - 1)z^2 - y x z^3}{1 - 4y x z + (4x^2 + 4y^2 - 2)z^2 - 4y x z^3 + z^4},
\]

that corresponds to a generating function for Chebychev polynomials of the first kind [7, 9, 10].

Case 3: The Stirling numbers of the second kind \(S(j, k)\) are defined by generating function

\[
\sum_{j=0}^{\infty} S(j, k) z^{j-k} = \frac{1}{(1-z)(1-2z) \cdots (1-kz)}.
\]

These numbers can be interpreted as the numbers of \(k\) partitions of a set of \(j\) elements. The Stirling numbers of the second kind \(S(j, k)\) can be expressed as

\[
S(j, k) = \frac{1}{k!} \sum_{s=0}^{k} (-1)^s \binom{k}{s} (k-s)^j.
\]

Abderrezzak [1] showed that

\[
S(j + k, k) = S_j(N_k),
\]

with \(N_k = \{1, 2, ..., k\}\). Thus,

\[
S(j + 1, 1) = S_j(1) = 1,
\]

\[
S(j + 2, 2) = S_j(1 + 2) = 2^{j+1} - 1.
\]

If \(a_1 = e_1 = 1\) and \(a_2 = e_2 = 2\) in formulas (11) and (12), then new generating functions are derived,

\[
S(j + 1, 1) + \sum_{j=1}^{\infty} S(j + 2, 2) z^j = \frac{1 + 2z}{(1-z)(1-2z)(1-4z)},
\]

\[
S(j + 1, 1) + \sum_{j=1}^{\infty} S(j + 2, 2) (2^j - 1) z^j = \frac{3}{(1-z)(1-2z)(1-4z)},
\]

\[
S(j + 1, 1) + \sum_{j=1}^{\infty} S(j + 2, 2) z^j = \frac{1 - 84z + 432z^2 - 672z^3 - 512z^4}{(1-z)(1-2z)^3(1-4z)^3(1-8z)}.
\]
4.3. THE CASE $A = \{a_1, a_2, a_3\}$

Corollaire 14. Given two alphabets $E = \{e_1, e_2\}$ and $A = \{a_1, a_2, a_3\}$, we have

$$\sum_{j=0}^{\infty} S_j(A) L_{e_1 e_2}(e_1) z^j = \frac{1 - e_1 e_2 (a_1 a_2 + a_1 a_3 + a_2 a_3) z^2 + e_1 e_2 a_1 a_2 a_3 (e_1 + e_2) z^3}{(\sum_{j=0}^{\infty} S_j(-A) e_1^j z^j) (\sum_{j=0}^{\infty} S_j(-A) e_2^j z^j)}.$$

Case 1: For $e_1 = a_1 = 1$, $a_2 = y$ and $e_2 = x$, $a_3 = \alpha$ in Corollary 14, we have

$$\sum_{j=0}^{\infty} S_j (1 + x) S_j(1 + y + \alpha) z^j = \frac{1 - x(y + \alpha + \alpha y) z^2 + x y \alpha (1 + x) z^3}{(1 - z) (1 - z x) (1 - z y) (1 - z y z) (1 - z x z)(1 - x z)}.$$

Remarque 15. Notice that for $\alpha = 0$, we find the identity (11) of Lascoux in [14].

Case 2: By replacing e_2 by $(-e_2)$ and making the following specialization

$$\begin{cases} e_1 e_2 = 1, \\ e_1 - e_2 = 1, \end{cases}$$

in Corollary 14, we obtain the following identity involving Fibonacci numbers and symmetric functions in several variables

$$\sum_{j=0}^{\infty} S_j(A) F_j z^j = \frac{1 + (a_1 a_2 + a_1 a_3 + a_2 a_3) z^2 + a_1 a_2 a_3 z^3}{(1 - a_1 z - a_1^2 z^2) (1 - a_2 z - a_2^2 z^2) (1 - a_3 z - a_3^2 z^2)}.$$

Case 3: By replacing e_1 by $2e_1$ and e_2 by $(-2e_2)$ making the following specialization $4e_1 e_2 = -1$ in Corollary 14, gives us an identity involving Chebyshev polynomials of second kind and the symmetric functions in several variables, as follows for $y = e_1 - e_2$,

$$\sum_{j=0}^{\infty} S_j(A) U_j(y) z^j = \frac{1 - (a_1 a_2 + a_1 a_3 + a_2 a_3) z^2 + 2a_1 a_2 a_3 y z^3}{(1 - 2a_1 y z - a_1^2 z^2) (1 - 2a_2 y z - a_2^2 z^2) (1 - 2a_3 y z - a_3^2 z^2)}.$$

5. CONCLUSION

In this paper, we proposed a new theorem (Theorem 1) to determine certain generating functions, which is based on the concepts of symmetric functions. The results
are consistent with results obtained in some previous work [7, 8, 9, 10, 11, 12]. The results obtained in this work are promising, but there are other perspectives to follow in the field. Future work should be based on the extension of the alphabet E and the study of k parameter values.

REFERENCES

