REFERENCES
[1] D. H. Lee, I. H. Chang, H. Pham, K. Y. Song, A software reliability model considering the syntax error in uncertainty environments, optimal release time, and sensitivity analysis, Appl. Sci., 8, (2018), 1483.
[2] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) Republished by AMS-Chelsea, (2005), ISBN: 978-0-821-83835-8.
[3] M. Ohba, Software reliability analysis models, IBM J. Research and Development, 21, No. 4 (1984).
[4] H. Pham, System Software Reliability, In: Springer Series in Reliability Engineering, Springer-Verlag London Limited (2006).
[5] S. Yamada, Software Reliability Modeling: Fundamentals and Applications, Springer (2014).
[6] S. Yamada, Y. Tamura, OSS Reliability Measurement and Assessment, In: Springer Series in Reliability Engineering (H. Pham, Ed.), Springer International Publishing Switzerland (2016).
[7] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[8] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-6139-87794-2.
[9] K. Ohishi, H. Okamura, T. Dohi, Gompertz software reliability model: Estimation algorithm and empirical validation, J. of Systems and Software, 82, No. 3 (2009), 535-543.
[10] D. Satoh, A discrete Gompertz equation and a software reliability growth model, IEICE Trans. Inform. Syst., E83-D, No. 7 (2000), 1508-1513.
[11] D. Satoh, S. Yamada, Discrete equations and software reliability growth models, In: Proc. 12th Int. Symp. on Software Reliab. and Eng., (2001), 176-184.
[12] S. Yamada, A stochastic software reliability growth model with Gompertz curve, Trans. IPSJ, 33, (1992), 964-969. (in Japanese)
[13] P. Oguntunde, A. Adejumo, E. Owoloko, On the flexibility of the transmuted inverse exponential distribution, Proc. of the World Congress on Engineering, July 5-7, 2017, London, U.K., 1, (2017).
[14] W. Shaw, I. Buckley, The alchemy of probability distributions: Beyond GramCharlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map, Research report, (2009).
[15] M. Khan, Transmuted generalized inverted exponential distribution with application to reliability data, Thailand Statistician, 16, No. 1 (2018), 14-25.
[16] A. Abouammd, A. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Stat. Comput. Simul., 79, No. 11 (2009), 1301-1315.
[17] I. Ellatal, Transmuted generalized inverted exponential distribution, Econom. Qual. Control, 28, No. 2 (2014), 125-133.
[18] E. P. Virene, Reliability growth and its upper limit, in: Proc. 1968, Annual Symp. on Realib., (1968), 265-270.
[19] S. Rafi, S. Akthar, Software Reliability Growth Model with Gompertz TEF and Optimal Release Time Determination by Improving the Test Efficiency, Int. J. of Comput. Applications, 7, No. 11 (2010), 34-43.
[20] F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residua-based fault detection using soft computing techniques for condition monitoring at rolling mills, Information Sciences, 259, (2014), 304-320.
[21] S. Yamada, M. Ohba, S. Osaki, S-shaped reliability growth modeling for software error detection, IEEE Trans, Reliab., R-32, (1983), 475-478.
[22] S. Yamada, S. Osaki, Software reliability growth modeling: Models and Applications, IEEE Transaction on Software Engineering, SE-11, (1985), 1431-1437.
[23] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz-type software reliability models, International Electronic Journal of Pure and Applied Mathematics, 12, No. 1 (2018), 43-57.
[24] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: Approximation and modeling aspects, International Journal of Pure and Applied Mathematics, 118, No. 3 (2018), 599611.
[25] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamada-exponential software reliability model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 871-882.
[26] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on The ”Mean Value” Software Reliability Model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 949-956.
[27] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted exponential software reliability model, International Journal of Advanced Research in Computer and Communication Engineering, 7, No. 3 (2018), 484487.
[28] A. L. Goel, Software reliability models: Assumptions, limitations and applicability, IEEE Trans. Software Eng., SE-11, (1985), 1411-1423.
[29] J. D. Musa, Software Reliability Data, DACS, RADC, New York (1980).
[30] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software reliability model, Int. J. of Latest Research in Engineering and Technology, 4, No. 5 (2018), 1-6.
[31] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On the extended Chen’s and Pham’s software software reliability models. Some applications, Int. J. of Pure and Appl. Math., 118, No. 4 (2018), 1053-1067.
[32] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some deterministic growth curves with applications to software reliability analysis, Int. J. of Pure and Appl. Math., 119, No. 2 (2018), 357-368.
[33] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Investigations of the K-stage Erlangian software reliability growth model, Int. J. of Pure and Appl. Math., 119, No. 3 (2018), 441-449.
[34] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on Ohbas Inflexion Sshaped Software Reliability Growth Model, Collection of scientific works from conference "Mathematics. Informatics. Information Technologies. Application in Education", Pamporovo, Bulgaria, October 10-12, (2018). (to appear)
[35] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Analysis of the Chen’s and Pham’s Software Reliability Models, Cybernetics and Information Technologies, 18, No. 3 (2018), 37-47.
[36] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On Some Nonstandard Software Reliability Models, Dynamic Systems and Applications, 27, No. 4 (2018),757771.
[37] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Application of a new class cumulative lifetime distribution to software reliability analysis, Comm. in Appl. Analysis, 22, No. 4 (2018), 555-565.
[38] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., 120, No. 1 (2018), 127-136.
[39] V. Kyurkchiev, H. Kiskinov, O. Rahneva, G. Spasov, A Note on the Exponentiated Exponential Poisson Software Reliability Model, Neural, Parallel, and Scientific Computations, 26, No. 3 (2018), 257-267.
[40] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN: 978-3-659-76045-7.
[41] N. Kyurkchiev, A. Iliev, S. Markov, Some techniques for recurrence generating of activation functions, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-330-33143-3.
[42] N. Pavlov, A. Golev, A. Iliev, A. Rahnev, N. Kyurkchiev, On the KumaraswamyDagum log-logistic sigmoid function with applications to population dynamics, Biomath Communications, 5, No. 1 (2018).
[43] R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the Blumberg’s hyper-log-logistic curve, BIOMATH, 7, No. 1 (2018).
[44] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the generalized cut functions of degree p + 1 by smooth hyper-log-logistic function, Dynamic Systems and Applications, 27, No. 4 (2018), 715-728.
[45] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the Log-logistic and transmuted Log-logistic models. Some applications, Dynamic Systems and Applications, 27, No. 3 (2018), 593-607.
[46] A. Malinova, V. Kyurkchiev, A. Iliev, N. Kyurkchiev, Some new approaches to Kumaraswamy-Lindley cumulative distribution function, Int. J. of Innovative Sci. and Techn., 5 No. 3 (2018), 233-236.
[47] A. Malinova, V. Kyurkchiev, A. Iliev, N. Kyurkchiev, A note on the transmuted Kumaraswamy Quasi Lindley cumulative distribution function, Int. J. for Sci., Res. and Developments, 6 No. 2 (2018), 561-564.
[48] N. Kyurkchiev, A new class activation functions with application in the theory of impulse technics, Journal of Mathematical Sciences and Modelling, 1, No. 1 (2018), 15-20.
[49] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the cut functions by hyper-log-logistic function, Neural, Parallel and Scientific Computations, 26, No. 2 (2018), 169-182.
[50] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.