Publication TypeJournal Article
Year of Publication2018
JournalNeural, Parallel, and Scientific Computations
Start Page237
Date Published09/2018

In this paper we consider a new class of cumulative distribution functions belonging to the important class of functions arising from the theory of impulse techniques, neural networks and debugging theory.

By this new family of cumulative functions we study the Hausdorff approximation of the impulse function σ∗∗(t).

Numerical examples, illustrating our results using the programming environment CAS MATHEMATICA are presented.

Refereed DesignationRefereed
Full Text


[1] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. and Prob. Letters, 49 (2000), 155-161.
[2] Y. Chaubey, R. Zhang, An extension of Chen’s family of survival distributions with bathtub shape or increasing hazard rate function, Comm. in Stat. - Theory and Methods, 44 (2015), 4049-4069.
[3] M. Xie, Y. Tang, T. Goh, A modified Weibull extension with bathtub - shaped failure rate function, Reliability Eng. and System Safety, 76 (2002), 279-285.
[4] M. Khan, A. Sharma, Generalized order statistics from Chen distribution and its characterization, J. of Stat. Appl. and Prob., 5 (2016), 123-128.
[5] S. Dey, D. Kumar, P. Ramos, F. Louzada, Exponentiated Chen distribution: Properties and Estimations, Comm. in Stat. - Simulation and Computation, (2017), 1-22.
[6] V. Cancho, F. Louzada, G. Barriga, The Poisson-exponential lifetime distribution, Comp. Stat. Data Anal., 55 (2011), 677-686.
[7] G. Rodrigues, F. Louzada, P. Ramos, Poisson-exponential distribution: different methods of estimation, J. of Appl. Stat., 45 (2018), no. 1, 128-144.
[8] F. Louzada, P. Ramos, P. Ferreira, Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence, Communication in Statistics-Simulation and Computation, (2018).
[9] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev Some Software Reliability Models: Approximation and Modeling Aspects, LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-82805-0
[10] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev Nonstandard Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-87794-2.
[11] N. Kyurkchiev, A. Iliev, A Note on The ”Saturation” of Poisson-Exponential Cumulative Function in Hausdorff Sense, Communications in Advanced Mathematical Sciences, (2018) (to appear).
[12] N. Kyurkchiev, A new class activation functions with application in the theory of impulse technics, Journal of Mathematical Sciences and Modelling, 1 (2018), no. 1, 15-20.
[13] O. Rahneva, H. Kiskinov, H. Melemov, M. Stieger, Some approximation Aspects for a new class cumulative distribution functions, Neural, Parallel, and Scientific Computations, 26 (2018), no. 2, 225-235, doi: 10.12732/npsc.v26i2.6
[14] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea (2005), ISBN: 978-0-821-83835-8.
[15] N. Kyurkchiev, A. Andreev, Approximation and Antenna and Filter Synthesis: Some Moduli in Programming Environment Mathematica, LAP LAMBERT Academic Publishing, Saarbrucken, (2014), ISBN 978-3-659-53322-8.
[16] N. Kyurkchiev, Bl. Sendov, Approximation of a class of functions by algebraic polynomials with respect to Hausdorff distance, Ann. Univ. Sofia, Fac. Math., 67 (1975), 573-579, (in Bulgarian).
[17] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54 (2016), no. 1, 109-119.
[18] A. Andreev, N. Kyurkchiev, Approximation of some impulse functions - implementation in programming environment MATHEMATICA, Proceedings of the 43 Spring Conference of the Union of Bulgarian Mathematicians, Borovetz, April 2-6, (2014), 111-117.
[19] N. Kyurkchiev, S. Markov, On the numerical approximation of the ”cross” set, Ann. Univ. Sofia, Fac. Math., 66 (1974), 19-25, (in Bulgarian).
[20] N. Kyurkchiev, A. Andreev, Hausdorff approximation of functions different from zero at one point - implementation in programming environment MATHEMATICA, Serdica J. of Computing, 7 (2013), no. 2, 135-142.
[21] N. Kyurkchiev, A. Andreev, Synthesis of slot aerial grids with Hausdorff-type directive patterns - implementation in programming environment Mathematica, C.R. Acad. Bulg. Sci., 66 (2013), no. 11, 1521-1528.
[22] N. Kyurkchiev, Synthesis of Slot Aerial Grids with Hausdorff Type Directive Patterns, PhD Thesis, Department of Radio-Electronics, VMEI, Sofia (1979), (in Bulgarian).
[23] Bl. Sendov, H. Schinev, N. Kjurkchiev, Hausdorff-synthesis of aerial grids in scanning the directive diagram, Electropromishlenost i Priboroostroene, 16 (1981), no. 5, 203-205, (in Bulgarian).
[24] H. Schinev, N. Kjurkchiev, M. Gachev, Experimental investigations of slot aerial grids with Hausdorff type directive patterns, it Electropromishlenost i Priboroostroene, 14 (1979), no. 6, 223-224, (in Bulgarian).
[25] H. Shinev, N. Kyurkchiev, M. Gachev, S. Markov, Application of a class of polynomials of best approximation to linear antenna array synthesis, Izv. VMEI Sofia, 34 (1975), no. 1, 1-6, (in Bulgarian).
[26] A. Golev, T. Djamiykov, N. Kyurkchiev, Sigmoidal functions in antenna-feeder technique, Int. J. of Pure and Appl. Math., 116 (2017), no. 4, 1081-1092. 
[27] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On the extended Chen’s and Pham’s software reliability models. Some applications, Int. J. of Pure and Appl. Math., 118 (2018), no. 4, 1053-1067.
[28] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the cut functions by hyper-log-logistic function, Neural, Parallel, and Scientific Computations, 26 (2018), no. 2, 169-182, doi: 10.12732/npsc.v26i2.3
[29] Q. Wang, Y. Zhang, Y. Guo, A novel heterogeneous training sample selection method on space-time adaptive processing, AIP Conference Proceedings, 1955, 040148 (2018), doi: 10.1063/1.5033812