ELASTICITY WITH MIXED FINITE ELEMENT

OUADIE KOUBAITEI, JAOUAD EL-MEKKAOU1, AND AHMED ELKHALFI3

1,3Departement of Genie Mecanique
Sidi Mohammed ben abdellah University
Faculte des Sciences et Techniques
B.P. 2202-Route d’Imouzzer - Fez, MOROCCO

2Faculty Polydisciplinaire
University of Sultan Moulay Slimane
Mghila BP: 592 Beni Mellal, MOROCCO

ABSTRACT: In this article we are intending to solve the Navier-Lame problem in 2D with Dirichlet and Neumann boundaries, using the mixed finite element P_1-bubble P_1. We want to introduce a new weak formulation of this problem with help of another new unknown which is equal to divergence of the displacement. We do the necessary calculations of this problem in order to come up with a Matlab program that visualizes the numerical solution. Some numerical results which are shown, prove that our method is more efficient than the ordinary finite element.

AMS Subject Classification: 74S05, 78M10, 80M10
Key Words: elasticity, mixed finite element, Matlab

Received: June 19, 2017; Accepted: August 16, 2018; Published: September 10, 2018; doi: 10.12732/caa.v22i4.1

1. INTRODUCTION

Since 2002, the article [1] entitled by Matlab Implementation of the finite element method in elasticity, thanks to the authors of this work J. Alberty,
Kiel, C. Carstensen, Vienna, SA Funken, Kiel and R. Klose, that have a great contribution in computing the numerical solution that is the approximation of the exact solution which is the unknown in the Navier-Lame equation, using the ordinary finite element methods programmed by Matlab. In fact, nobody has thought to apply the mixed finite element Method to the equation Navier-Lame, that will be the subject of our research.

This study is based on the calculation of the numerical solution using the mixed finite element method P1-bubble P1 and to do this we have to create another new unknown by setting ψ equal to the divergence of the displacement, getting a couple of unknown (u, ψ). Comparing the numerical results found in the article cited above mentioned in article [1], we will prove that the new method is more accurate and efficient.

2. MODEL EQUATION

We propose the numerical Method employs the mixed finite element (P1-bubble,P1) to calculate the numerical solution of the displacement, and its discrete divergence, to the following 2D Navier-Lam problem. Let’s consider $\Omega \subset \mathbb{R}^2$ be a bounded Lipschitz domain with polygonal boundary $\Gamma = \Gamma_N \cup \Gamma_D$, with Γ_D is a closed subset of the boundary with positive length, which called Dirichlet conditions; however Γ_N is the Neumann boundary condition. The 2 components of the displacements can not satisfy either Dirichlet- or Neumann conditions. Given $f \in L^2(\Omega), M \in L^\infty(\Gamma_D)^{2 \times 2}, h \in H^1(\Gamma_D)$ and $g \in L^2(\Gamma_N)$ as well as the positive parameters λ and μ. The equation below is governed as follows:

Solid object is deformed under the action of forces applied. A point in the solid, originally in (x, y), after sometime it will come into (X, Y), the vector $u = (u_1, u_2) = (X - x, Y - y)$ is called displacement. When the movement is small and the solid is elastic, then HOOK’s law gives a relationship between the stress tensor and the strain tensor.

$$\sigma = \lambda \, tr(\varepsilon) \, I_2 + 2 \, \mu \, \varepsilon$$

is the stress tensor; $\varepsilon = \frac{1}{2}(\nabla u + (\nabla U)^T)$ is the strain tensor; I_2 is the identity matrix; μ is the shear modulus (or rigidity), where λ is Lam’s first parameter.

Navier’s equation is given by the law of conservation moment $\rho a = \text{div } \sigma$ with a is the acceleration and ρ is the density of material. On the other hand,
\[\text{div } \sigma = \lambda \text{div} \ (\text{tr} \ (\varepsilon) I_2) + 2\mu \text{div} \ \varepsilon. \]

Then we have

\[\text{div } \sigma = \lambda \text{div} \ (\text{tr} \ (\varepsilon) I_2) + \mu \text{div} \ (\text{grad} \ u) + \mu \text{div} \ (\text{grad} \ u)^T. \]

With a simple calculation, we find that

\[\text{div} \ (\text{tr} \ (\varepsilon) I_2) = \text{div} \ (\text{grad} \ u)^T = \text{grad} \ (\text{div} \ u). \]

Then we get

\[\rho \ a = \mu \Delta u + (\lambda + \mu) \text{grad} \ (\text{div} \ u). \]

If the solid is in dynamic equilibrium then we have \(\rho a + f = 0 \), \(f \) are the external forces applied to the solid. Finally, we find out the equation \(f = -\mu \Delta u - (\lambda + \mu) \text{grad} \ (\text{div} \ u) \).

We create a new unknown \(\psi = \nabla \cdot u \) that is equal to divergence of the displacement. The equation of Navier-Lame become:

\[
\begin{cases}
-\mu \Delta u - (\lambda + \mu) \nabla \psi = f & \text{in } \Omega, \\
\psi = \nabla \cdot u & \text{in } \Omega, \\
M.u = h & \text{on } \Gamma_D, \\
\mu \frac{\partial u}{\partial n} + \lambda \nabla \cdot u_n = g & \text{on } \Gamma_N.
\end{cases}
\]

We need to introduce the following functional spaces

\[
\begin{align*}
h^1(\Omega) &= \{ u : \Omega \to \mathbb{R} \ \text{such that } u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \in L^2(\Omega) \}, \\
V_0(\Omega) &= \{ u \in H^1(\Omega) = [h^1(\Omega)]^2 \ \text{on } \Gamma_D \}, \\
V(\Omega) &= \{ u \in H^1(\Omega) = [h^1(\Omega)]^2 \ \text{on } \Gamma_D \}, \\
M(\Omega) &= L^2_0(\Omega) = \{ q \in L^2(\Omega) \ \text{s.t. } \int_\Omega q = 0 \}.
\end{align*}
\]

The variational formulation of the Navier-Lame problem (2.1) is as follows
Find \((u, \psi) \in V(\Omega) \times M(\Omega) \) such that

\[
\begin{align*}
a(u, v) + b_N(v, \psi) &= L(v) \quad \forall v \in V_0(\Omega), \\
b(u, q) - d(\psi, q) &= 0 \quad \forall q \in M(\Omega),
\end{align*}
\]

(2.2)
and bilinear forms

\[
\begin{align*}
\quad \quad \quad a(u,v) &= \int_{\Omega} \mu \nabla u : \nabla v \, d\Omega, \\
\quad b(v,q) &= \int_{\Omega} (\lambda + \mu) q \nabla v \, d\Omega, \\
\quad b_N(v,q) &= b(v,q) - \int_{\Gamma_N} \mu q n \cdot v \, d\Gamma_N, \\
\quad d(\psi,q) &= \int_{\Omega} (\lambda + \mu) \psi q \, d\Omega, \\
\quad L(v) &= \int_{\Omega} f v \, d\Omega + \int_{\Gamma_N} g v \, d\Gamma_N.
\end{align*}
\]

\tag{2.3}

The existence and uniqueness of the solution \((u; \psi)\) of the system (2.2) and its equivalence with (2.1) are well established by the verification the continuity and coercivity for the bilinear forms and the continuity of linear form \(L\), defined above in (2.3) and the Theorem 3.1 in [3].

3. FINITE ELEMENT DISCRETISATION

To apply the method of mixed finite element P1-bubble/P1 for the variational problem (2.2). We need some mathematical tools, then we use the approximation of the standard Galerkin method, for more explication we can see in the articles [6, 7, 8, 9, 10]. Let’s consider a uniform triangulation \(T_h\) of the rectangular domain \(\Omega\), where \(h > 0\) is the maximum diameter of all elements \(K \in T_h\), and \(T_h\) consists of triangles in two dimensions. We assume that we have a sequence of triangulations \((T_h)_h\) as \(h \to 0\).

Let \(\lambda^K_1, \lambda^K_2, \lambda^K_3\) be the barycentric coordinates with respect to a triangle \(K\). \(\mu^K\) is the bubble function associated with the triangle \(K\) defined by \(\mu^K = \lambda^K_1 \lambda^K_2 \lambda^K_3\) in \(K\) and equal to 0 elsewhere. We define the discrete domain and two approached spaces as follows:

\[
\Omega_h = \bigcup_{k=1}^{n} T_k,
\]

\(\Omega_h\) is closed and if \(\Omega\) is polygon then \(\Omega_h = \overline{\Omega}\) and \(\Gamma_h = \partial \Omega_h = \partial \Omega = \Gamma\).
ELASTICITY WITH MIXED FINITE ELEMENT

\[V_h = \{ \varphi_h \in H^1(\Omega_h) \setminus \varphi_h|_K = \sum_{i=1}^{3} \alpha_i^K \lambda_i^K + \beta^K \mu^K(x) \alpha_i^K, \]

\[\beta^K \in \mathbb{R}, M.\varphi_h|_{\Gamma D \cap K} = 0, \forall K \in T_h \}, \]

\[M_h = \{ \psi_h \in L^1_0(\Omega_h) \setminus \psi_h|_K = \sum_{i=1}^{3} \theta_i^K \lambda_i^K, \theta_i^K \in \mathbb{R}, \forall K \in T_h \} \subset \mathbb{P}_1(K). \]

\(\mathbb{P}_1(K) \) is the space of polynomials defined on the triangle \(K \) of the degree lower or equal to 1.

The functions of \(V_h \times M_h \) are not globally affine in all \(\Omega \), but only affine by piece.

On the other hand, they are generally continuous. The functions of the space are completely determined by their values in each of the mesh vertices. For the solution of an elasticity problem, the displacement/div-displacement \((u/\psi)\) finite element discretizations are effective in [5]. Let \(V_h \) be the finite element displacement interpolation space and \(M_h \) be the finite element div-displacement interpolation space (corresponding to the spaces \(V(\Omega) \) and \(M = L^2_0(\Omega) \) of the continuous problem.

The functions of the space \(V_h \) are completely determined by their values in each of the mesh vertices. Moreover the dimension of the space \(V_h \) is \(N - n_s \), with \(N \) is the overall number of vertices and \(n_s \) the number of vertices on the boundaries. Then the finite element problem is:

Let’s seek \(u_h \in V_h \) considering \(M.u_h = h_h \) on \(\Gamma_D \) and \(\psi_h \in M_h \) and

\[
\begin{align*}
a_h(u_h, v_h) + b_{Nh}(v_h, \chi_h) &= L_h(v_h) \forall v_h \in V_h \\
b_h(u_h, q_h) - d_h(\psi_h, q_h) &= 0 \forall q_h \in M_h
\end{align*}
\]

(3.1)

where

\[
\begin{align*}
a_h(u_h, v_h) &= \int_K \mu \nabla u_h : \nabla v_h dK \\
b_h(v_h, q_h) &= \int_K (\lambda + \mu) q_h \nabla . v_h dK \\
b_{Nh}(v_h, q_h) &= b_h(v_h, q_h) - \int_{\Gamma_{N,h}} \mu q_h n_K . v_h d\Gamma_h \\
d_h(\psi_h, q_h) &= \int_K (\lambda + \mu) \psi_h q_h dK \\
L_h(v_h) &= \int_K f.v_h dK + \int_{\Gamma_{N,h}} g.v_h d\Gamma_{N,h}
\end{align*}
\]

(3.2)
With $\Gamma_{N,h} = \Gamma_N \cap \partial K$ and n_K the normal on K.

The existence and uniqueness of the solution of the mixed formulation (3.1) is shown by using.

The continuity of the bilinear forms a on $V_h \times V_h$, b_N on $V_h \times M_h$, b on $V_h \times M_h$ and d on $M_h \times M_h$ is clear by using the Korn’s inequality. On the other hand, the coercivity of the bilinear form a on V_h and d on M_h is hold by using theirs coercivity on $V(\Omega)$ and $M(\Omega)$ respectively since $V_h \subset V(\Omega)$. We can see the uniform \text{inf} – \text{sup} condition uniformly of the bilinear form b in [4] with respect to the mesh-size.

It can be proved that uniform \text{inf} – \text{sup} condition for the bilinear form $b_{N,h}$ on $V_{0h} \times M_{0h}$ it means we have to prove the existence of a constant $\vartheta' > 0$ independent of the mesh-size as the following theorem clarifies.

Theorem 3.1. There exist $\vartheta > 0$ such as

$$\forall q_h \in M_h, \exists u_h \in V_h, u_h \neq 0 \; b_T(u_h, q_h) \geq \vartheta \| u_h \|_{1,\Omega} \| q_h \|_{0,\Omega}. \quad (3.3)$$

This theorem guarantee the verification of the condition \text{inf} – \text{sup} of the bilinear form b_T. It should be noted that

$$b_T(u_h, q_h) = b(u_h, q_h) - \int_{\Gamma_{N,h}} \mu q_h n_K.v_h d\Gamma_h, \forall u_h \in V_h.$$

Proof. First we prove that the bilinear form b verifies (3.3) of Theorem 3.1.

It is assumed that the triangulation T_h is uniformly regular. Let $q_h \in M_h$ be fixed $M_h \subset M$ and that the bilinear form b satisfies the \text{inf} – \text{sup}’s condition in $V \times M$ so that there exist $u \in V$ and $b(u, q_h) \geq \beta \| u \|_{1,\Omega} \| q_h \|_{0,\Omega}$ with $\beta > 0$ independent of q_h, but u depends of q_h. For this u we have just show that $u_h \in V_h$ clarified below:

$$b(u_h, q_h) = b(u, q_h), \| u_h \|_{1,\Omega} \leq c \| u \|_{1,\Omega} \quad (3.4)$$

The relations (3.4) are the object of the later lemma (3.2), where $c > 0$ is independent of q_h and h.

Indeed if (3.4) are checked so

$$b(u_h, q_h) = b(u, q_h) \geq \beta \| u \|_{1,\Omega} \| q_h \|_{0,\Omega} \geq \frac{\beta}{c} \| u_h \|_{1,\Omega} \| q_h \|_{0,\Omega}, \text{ just take } \beta' = \frac{\beta}{c}$$

We have $\int_{\Gamma} \mu q_n.v d\Gamma \leq c' \| v \|_{1,\Omega} \| q \|_{0,\Omega}$ then, $V_h \subset V$ and $M_h \subset M$.
we obtain
\[\int \mu q_h n \cdot v_h d\Gamma \leq c' \| \mu \|_{1,\Omega} \| q_h \|_{0,\Omega} \]then we have \(b_N(v_h, q_h) \geq (\beta' - c') \mu \| q_h \|_{0,\Omega} \| v_h \|_{1,\Omega} \). Also we get \(\vartheta = \beta' - c' \mu \) when we have \(\mu < \frac{\beta'}{c} \)

Lemma 3.2. there exist \(u_h \in V_h \) and \(c > 0 \) so that \(u \) is fixed and \(\forall q_h \in M_h \)

\[b(u_h, q_h) = b(u, q_h) \), \(\| u_h \|_{1,\Omega} \leq c \| u \|_{1,\Omega} \] (3.5)

Proof. First we define the linear operator \(R_h \in L(V, V_h) \), which verifies \(\forall v_h \in V_h \exists ! v \in V \), so that \(R_h v = v_h \). This operator is a projector of \(V \) on \(V_h \) it is well defined. Indeed Lax Milgrammm ensures the unique existence of the variational problem : find \(v \) in \(V \) so as

\[\int_\Omega \nabla (R_h v - v) \cdot \nabla v_h dx = 0 \), \(\forall v_h \in V_h \] (3.6)

If we take \(v_h = R_h v \) in (3.6) we obtain \(\| \nabla R_h v \|_{0,\Omega}^2 = \int_\Omega \nabla v \cdot \nabla v_h dx \) then

\(\| \nabla R_h v \|_{0,\Omega}^2 \leq \| \nabla R_h v \|_{0,\Omega} \| \nabla v \|_{0,\Omega} \) we conclude that \(\| \nabla R_h v \|_{0,\Omega} \leq \| \nabla v \|_{0,\Omega} \) we find that \(R_h \) is continuous the sense of \(H^1_0(\Omega) \) \(\cap V \), and by the density of \(H^1_0(\Omega) \) in \(H^1(\Omega) \); it means that \((H^1_0(\Omega) \cap V)^{\| \cdot \|_{1,\Omega}} \subset H^1(\Omega) \), so we have its continuity in the space \(V \) then, we suppose that the operator \(R_h \) checks the next properties of estimation, that is to say : there exist \(C > 0 \) independent of \(h \) and \(v \)

\[\| (R_h v - v) \|_{0,\Omega} \leq c_h \| \nabla v \|_{0,\Omega} \] (3.7)

The above findings are workable for all \(v \in V \). Now, we can prove that the first relation of (3.5) in lemma (3.2), as follow:

\[\int_{\Omega_h} \nabla \cdot u_h q_h dx = \int_{\Omega_h} \nabla \cdot u q_h dx \]

by applying the Green formula, we found \(\int_{\Omega_h} \nabla q_h \cdot u_h dx = \int_{\Omega_h} \nabla q_h \cdot u dx \) but \(\nabla q_h \) is constant when \(q_h \in P_1(K) \). So, \(\int_K u_h dx = \int_K u dx \) \(\forall K \) by the definition of the space \(V_h \), for every function \(u_h \) of \(V_h \) is determined by the relation \(u_h = \sum_{i=1}^3 u_h(a_i^K) \lambda_i(x) + \beta^K \mu^K(x) \) \(\forall x \in K \), we have

\[\int_K u_h dx = \sum_{i=1}^3 u_h(a_i^K) \int_K \lambda_i(x) dx + \beta^K \int_K \mu^K(x) dx \]

\[= \sum_{i=1}^3 R_h(u(a_i^K)) \int_K \lambda_i(x) dx + \beta^K \int_K \mu^K(x) dx \]
Finally, we just take \(u_h = R_h u \) who verifies \(b(u_h, q_h) = b(u, q_h) \).

Now let prove the second relation of lemma (3.2) we have

\[
u_h|_K = \sum_{i=1}^{3} R_h u(a^K_i) \lambda_i + \beta^K \mu^K,
\]

with a simple writing \(u_h|_K = R_h u + \beta^K \mu^K \) and \(\| u_h \|_{1,\Omega}^2 = \sum_{K \in T_h} \| u_h \|_{1,K}^2 \), then

\[
\| u_h \|_{1,\Omega}^2 \leq \sum_{K \in T_h} (\| R_h u \|_{1,K} + |\beta^K| \| \mu^K \|_{1,K})^2
\]

\[
\leq 2 \sum_{K \in T_h} (\| R_h u \|_{1,K}^2 + |\beta^K|^2 \| \mu^K \|_{1,K}^2)
\]

\[
\leq 2 \| R_h u \|_{1,\Omega}^2 + 2 \sum_{K \in T_h} |\beta^K|^2 \| \mu^K \|_{1,K}^2
\]

By the continuity of the operator \(R_h \), \(\| u_h \|_{1,\Omega} \leq c \| u \|_{1,\Omega} + 2 \sum_{K \in T_h} |\beta^K|^2 \| \mu^K \|_{1,K}^2 \) By using the relation \(\int_K u dx = \int_K u_h dx = \int_K R_h u dx + \beta^K \int_K \mu^K dx \), \(\beta^K = \frac{\int_K (u - R_h u) dx}{\int_K \mu^K dx} \), \(\int_K \mu^K dx = \frac{|K|}{h^2} \), and using Cauchy-Schwarz it gives, the existence of \(c > 0 \) independent of \(h \) and \(K \) so as \(|\beta^K|^2 \leq c \frac{\| u - R_h u \|_{0,K}^2}{h^2} \)

the function \(\mu^K \) is bounded in the sense of the norm : \(\| \|_{1,K} \), and by the relation (3.7) we get \(\| u_h \|_{1,\Omega} \leq c \| u \|_{1,\Omega} \)

Finally, it was also shown that the element: \(P_1 - \text{bubble} \setminus P_1 \) satisfies the condition inf – sup discreet

\[\square\]

4. ALGEBRIC PROBLEM

In this section we introduce the Matrices \(A, B_N, B, D, L \) related to the bilinear forms \(a_h, b_{Nh}, b_h, d_h, L_h \) respectively in the following way and we can express
the bilinear forms according to the operators as well defined here

\[a_h(u_h, v_h) = (A u_h, v_h) \forall (u_h, v_h) \in V_h(\Omega) \times V_h(\Omega) \]

\[b_{N_h}(v_h, q_h) = (B_N v_h, q_h) \forall (q_h, v_h) \in M_h(\Omega) \times V_h(\Omega) \]

\[b_h(u_h, q_h) = (B v_h, q_h) \forall q_h \in M_h(\Omega) \times V_h(\Omega) \]

\[d_h(\psi_h, q_h) = (D \psi_h, q_h) \forall (\psi_h, q_h) \in M_h(\Omega) \times M_h(\Omega) \]

\[L_h(v_h) = L v_h \forall v_h \in V_h(\Omega) \]

With (4.1), we find that the discrete formulation (3.1) can be expressed as a system of operator equations

\[
\begin{align*}
A u_h + B^t_N \psi_h &= L \\
B u_h - D \psi_h &= 0
\end{align*}
\]

We find that the discrete formulation can be expressed as a system of linear equations as well

\[
\begin{pmatrix} A & B^t_N \\ B & -D \end{pmatrix} \begin{pmatrix} u_h \\ \psi_h \end{pmatrix} = \begin{pmatrix} L \\ 0 \end{pmatrix}
\]

with \(u_h = (u_x, u_y) \), we can express the algebraic system (4.2) as follows

\[
\begin{pmatrix} A & 0 & B^t_{N,x} \\ 0 & A & B^t_{N,y} \\ B_x & B_y & -D \end{pmatrix} \begin{pmatrix} u_x \\ u_y \\ \psi \end{pmatrix} = \begin{pmatrix} L_x \\ L_y \\ 0 \end{pmatrix}
\]

Let \{φ₁; φ₂; ..., φₙ\} be the finite element basis formed of scalar functions \(φ_i, i = 1...n \). In practice the two components of \((u^x_h, u^y_h)\) of \(u_h \) are always appreciated by one space finite element. Let \(N \) be the number of nodes in the finite element mesh, and \(n = N - n_s \) with \(n_s \) the number of vertices on the boundaries. The basis of the space \(V_h \) \(B_{V_h} = \{ φ_1 = (φ_1, 0) \ldots φ_n = (φ_n, 0), φ_{n+1} = (0, φ_1) \ldots φ_{2n} = (0, φ_n) \} \), then \(u_h = (u^x_h, u^y_h) \in V_h \) can be given by the relation

\(u_h = u^x_1 φ_1 + \ldots + u^x_n φ_n + u^y_1 φ_{n+1} + \ldots + u^y_n φ_{2n}. \)

For a given triangle \(K \), the displacement field \(u_h \) and the divergence \(\psi_h \) are approximated by linear combinations of the basis functions in the form

\(u^x_h = \sum_{i=1}^{3} u^x_i φ_i + u_b φ_b, \quad u^y_h = \sum_{i=1}^{3} u^y_i φ_i + u_b φ_b, \quad \psi_h = \sum_{i=1}^{3} ψ_i φ_i. \)

The linear system (4.4), attached to the discrete system (4.2) is evaluated over each triangle \(K \) to obtain the element of the local matrices and the global matrices are denoted by uppercase letters, and are given by direct-summing. The matrices elements over the domain
We need the following notations,

\[a_{ij} = \int_K \mu \nabla \varphi_i \cdot \nabla \varphi_j dK, \quad A = \sum_{K \in T_h} a_{ij} \]

\[b^x_{ij} = \int_K (\lambda + \mu) \frac{\partial \varphi_i}{\partial x} \varphi_j dK, \quad B^x = \sum_{K \in T_h} b^x_{ij} \]

\[b^y_{ij} = \int_K (\lambda + \mu) \frac{\partial \varphi_i}{\partial y} \varphi_j dK, \quad B^y = \sum_{K \in T_h} b^y_{ij} \]

\[b^x_{N,ij} = b^x_{ij} - \int_{E \cap K \subset \Gamma_{N,h}} \mu \varphi_i n_{ij} \varphi_j dE, \quad B^x_N = \sum_{K \in T_h} b^x_{N,ij} \]

\[b^y_{N,ij} = b^y_{ij} - \int_{E \cap K \subset \Gamma_{N,h}} \mu \varphi_i n_{ij} \varphi_j dE, \quad B^y_N = \sum_{K \in T_h} b^y_{N,ij} \]

\[d_{ij} = \int_K (\lambda + \mu) \varphi_i \varphi_j dK, \quad D = \sum_{K \in T_h} d_{ij} \]

\[l^x_i = \int_K f_1 \varphi_i dK + \int_{E \cap K \subset \Gamma_{N,h}} g_1 \varphi_i dE, \quad L^x = \sum_{K \in T_h} l^x_i \]

\[l^y_i = \int_K f_2 \varphi_i dK + \int_{E \cap K \subset \Gamma_{N,h}} g_2 \varphi_i dE, \quad L^y = \sum_{K \in T_h} l^y_i dE \]

knowing that \(f = (f_1, f_2), g = (g_1, g_2), n_{ij} = 0, 1 \) or -1, we have element matrices.

In this section, we Calculate elementary matrices in (4.5). In order to carry them out, the calculations which have already been made in the article [2] will be based.

For a triangle \(K \) let \((x_i, y_i)_{i=1,2,3} \) be the vertices and the basis functions are defined by \(\varphi_1(x, y) = 1 - x - y, \varphi_2(x, y) = x, \varphi_3(x, y) = y, \varphi_6 = 27 \varphi_1 \varphi_2 \varphi_3 \). We need the following notations, \(x_{ij} = x_i - x_j, y_{ij} = y_i - y_j \) \(i, j = 1, 2, 3 \) and

\[x^{(K)} = \begin{pmatrix} x_{32} \\ x_{13} \\ x_{21} \end{pmatrix}, \quad y^{(K)} = \begin{pmatrix} y_{32} \\ y_{13} \\ y_{21} \end{pmatrix} \]

the nonbubble part of the matrix \(A \) is written like

\[A^K = (a_{ij})_{i,j=1,2,3} = \frac{\mu}{4|K|} \left(y^{(K)} (y^{(K)} + x^{(K)} x^{(K)}) \right), \text{ with } |K| = \frac{x_{32}^{(K)} y_{13}^{(K)} - x_{21}^{(K)} y_{31}^{(K)}}{2} \]

the bubble part of \(A \) are \(A_b = (a_{bj})_{j=1,2,3} = \mathbf{0}_{31}, \text{ with } \mathbf{0}_{31} \text{ is a Zero column vector with 3 elements} \)
And for the diagonal

\[a_{bb} = \frac{81\mu}{10} \left| K \right| (| \nabla \varphi_1 |^2 + | \nabla \varphi_2 |^2 + \nabla \varphi_1 \cdot \nabla \varphi_2) \]

\[= \frac{81\mu}{40} \left| K \right| (x_1^{(K)} x_2^{(K)} + (x_2^{(K)})^2 + (y_1^{(K)})^2 + (y_2^{(K)})^2 + x_1^{(K)} x_2^{(K)} + y_1^{(K)} y_2^{(K)}) \]

Since the stiffness matrix \(A \) is symmetric, then we have

\[A = \begin{pmatrix} A^K & A_b \\\nA_b^t & a_{bb} \end{pmatrix} = \begin{pmatrix} A^K & 0 \\ 0 & a_{bb} \end{pmatrix} \tag{4.7} \]

the mass matrix \(D \) is given by for \(i, j = 1, 2, 3 \)

\[D = \begin{cases} \frac{\mu + \lambda}{6} \left| K \right|, & i = j \\ \frac{\mu + \lambda}{12} \left| K \right| & i \neq j \end{cases} \tag{4.8} \]

Now we will implement the divergence matrices, the element matrices of non-bubble part of \(B_x \) and \(B_y \) are given by

\[B^K_x = \frac{1}{6} (\mu + \lambda) \begin{pmatrix} y^{(K)}_t \\ y^{(K)}_t \\ y^{(K)}_t \end{pmatrix}, \quad B^K_y = \frac{1}{6} (\mu + \lambda) \begin{pmatrix} x^{(K)}_t \\ x^{(K)}_t \\ x^{(K)}_t \end{pmatrix} \tag{4.9} \]

the bubble part are given like \(B_{xb} = (\mu + \lambda) \frac{9}{40} y^{(K)}_t, \quad B_{yb} = (\mu + \lambda) \frac{9}{40} x^{(K)}_t \)

Finally

\[B_x = \begin{pmatrix} B^K_x \\ B_{xb} \end{pmatrix}, \quad B_y = \begin{pmatrix} B^K_y \\ B_{yb} \end{pmatrix} \tag{4.10} \]

Element right-hand side

The nonbubble part of the external forces is given by

\[l^K_x = \frac{\left| K \right|}{3} f_{1K} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad l^K_y = \frac{\left| K \right|}{3} f_{2K} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{4.11} \]

where

\[f_{iK} = \frac{(f_i(x_1) + f_i(x_2) + f_i(x_3))}{3}, \quad i = 1, 2 \]

the bubble part of the right-hand side are \(l_{xb} = \frac{9}{20} \left| K \right| f_{1K}, l_{yb} = \frac{9}{20} \left| K \right| f_{2K} \), finally we have

\[l_x = \begin{pmatrix} l^K_x \\ l_{xb} \end{pmatrix}, \quad l_y = \begin{pmatrix} l^K_y \\ l_{yb} \end{pmatrix} \tag{4.12} \]
Now we will build the matrix of 11×11 corresponding to the system (4.4)

\[
\begin{pmatrix}
A^k & 0 & 0 & 0 & B_{N,x}^t \\
0 & a_{bb} & 0 & 0 & B_{bN,x}^t \\
0 & 0 & A^k & 0 & B_{N,y}^t \\
0 & 0 & 0 & a_{bb} & B_{bN,y}^t \\
B_K^x & B_{bK} & B_K & B_{by} & -D
\end{pmatrix}
\begin{pmatrix}
u_x \\
u_{bx} \\
u_y \\
u_{by} \\
\psi
\end{pmatrix}
=
\begin{pmatrix}
l_K^x \\
l_{bx} \\
l_K^y \\
l_{by} \\
0
\end{pmatrix}
\tag{4.13}
\]

We will classify the system (4.13) in such a way that we can describe the bubble part of the unknown u as a function of the nonbubble part of u and ψ, in order to be able to eliminate it thereafter

\[
\begin{pmatrix}
A^k & 0 & 0 & 0 & B_{N,x}^t \\
0 & A^k & 0 & 0 & B_{N,y}^t \\
0 & 0 & a_{bb} & 0 & B_{bN,x}^t \\
0 & 0 & 0 & a_{bb} & B_{bN,y}^t \\
B_K^x & B_K & B_K & B_{by} & -D
\end{pmatrix}
\begin{pmatrix}
u_x \\
u_y \\
u_{bx} \\
u_{by} \\
\psi
\end{pmatrix}
=
\begin{pmatrix}
l_K^x \\
l_K^y \\
l_{bx} \\
l_{by} \\
0
\end{pmatrix}
\tag{4.14}
\]

From line 3 and 4 of the system (4.14), we deduce

\[
\begin{align*}
u_{bx} &= a_{bb}^{-1}(l_{bx} - B_{bN,x}^t\psi) \\
u_{by} &= a_{bb}^{-1}(l_{by} - B_{bN,y}^t\psi)
\end{align*}
\tag{4.15}
\]

with the elimination of u_{bx} and u_{by} we find the new linear system with the

Matrix in $U =
\begin{pmatrix}
u_x \\
u_y \\
\psi
\end{pmatrix}$

\[
A =
\begin{pmatrix}
A^k & 0 & B_{N,x}^t \\
0 & A^k & B_{N,y}^t \\
B_K^x & B_K & -B_{bx}B_{bN,x}^t a_{bb}^{-1} - B_{by}B_{bN,y}^t a_{bb}^{-1} - D
\end{pmatrix}
\tag{4.16}
\]

and the right hand

\[
F =
\begin{pmatrix}
l_K^x \\
l_K^y \\
-l_{bx}a_{bb}^{-1} - l_{by}a_{bb}^{-1}
\end{pmatrix}
\tag{4.17}
\]

In this paragraph we presented the assembling of the matrix A and the right hand F, using the matlab code in Article [2], we modified and adapted
this code to our problem. The main difficulty in solving the linear system $AU = F$ by using Matlab is the The implementation of neumann terms in integrals Constituting the elements of the matrices $B_{N,x}, B_{N,y}, B_{bN,x}, B_{bN,y}$. The Matlab code contains two main routines. One assembles the matrix A, called Function $A = \text{elastic2dp1bmat2}(p, t, \lambda, \mu, nn)$. The other routine assembles the vector F, called Function $b = \text{elastic2dp1brhs2}(p, t, \lambda, \mu, f1, f2)$. Knowing that p and t are two arrays that store nodes coordinates and triangle vertices Sequentially, nn, nt and np are the The numbers of neumann nodes, triangle vertices and, nodes coordinates Sequentially.

Assembly of the matrix A: loop over triangles

function $A = \text{elastic2dp1bmat2}(p, t, \lambda, \mu, nn)
np = \text{size}(p, 1) ; \ nt = \text{size}(t, 1) ; \ Z = \text{zeros}(3, 3) ;
\ Mel = (1/12)*[2 1 1 ; 1 2 1 ; 1 1 2] ;$

loop over all triangles
if (nargin == 5) , $A = \text{sparse}(3*np, 3*np, nn) ;$
else, $A = \text{sparse}(3*np, 3*np) ;$ end
for ih = 1 : nt
it = [t(ih, 1 : 3), np + t(ih, 1 : 3), 2*np + t(ih, 1 : 3)] ;
triangles area
$x21 = p(t(ih, 2), 1) - p(t(ih, 1), 1) ; \ y12 = p(t(ih, 1), 2) - p(t(ih, 2), 2) ;$
$x32 = p(t(ih, 3), 1) - p(t(ih, 2), 1) ; \ y23 = p(t(ih, 2), 2) - p(t(ih, 3), 2) ;$
$x13 = p(t(ih, 1), 1) - p(t(ih, 3), 1) ; \ y31 = p(t(ih, 3), 2) - p(t(ih, 1), 2) ;$
\ tarea = (x21*y31 - x13*y12)/2 ;$
\ x(T), y(T), \ and \ abb$
\ xt = [x32 ; x13 ; x21] ; \ yt = [y23 ; y31 ; y12] ;$
\ abb = (81/40) * \mu * ((y23)^2 + (x32)^2 + (y31)^2 + (x13)^2 + y23*y31 + x32*x13)/tarea ;$
element stiffness matrices : A
\ Ah = \mu * (0.25/tarea) * (xt * xt' + yt * yt') ;$
element divergence/stabilization matrices
\ BNx = (\lambda + \mu) * (1/6) * [yt'; yt'; yr] ;$
\ BNy = (\lambda + \mu) * (1/6) * [xt'; xt'; xr] ;$
\ Bx = (\lambda + \mu) * (1/6) * [yt'; yt'; yr] ;
\[By = (\lambda + \mu) * (1/6) * [xt'; xt'; xt'] ; \]
\[E = -(\lambda + \mu)^2 * 81/(1600 * \text{abb}) * (yt * yt' + xt * xt') - (\lambda + \mu) * \text{tarea} * M_{el} ; \]

Element P1-bubble/P1 matrix and assembly
\[A_{el} = [A_h Z B_{Nx'}; Z A_h B_{Ny'}; B_x B_y E] ; \]
\[A(it,it) = A(it, it) + A_{el} ; \]

Assembly of the right-hand side: loop over triangles

```matlab
function b = elastic2dp1brhs2(p, t, lambda, mu, f1, f2)
np = size(p, 1) ; nt = size(t, 1) ;

loop over all triangles

b = zeros(3*np, 1) ;
for ih = 1 : nt

\[ \text{triangles area} \]
\[ x_{21} = p(t(ih, 2), 1) - p(t(ih, 1), 1) ; \]
\[ y_{12} = p(t(ih, 1), 2) - p(t(ih, 2), 2) ; \]
\[ x_{32} = p(t(ih, 3), 1) - p(t(ih, 2), 1) ; \]
\[ y_{23} = p(t(ih, 2), 2) - p(t(ih, 3), 2) ; \]
\[ x_{13} = p(t(ih, 1), 1) - p(t(ih, 3), 1) ; \]
\[ y_{31} = p(t(ih, 3), 2) - p(t(ih, 1), 2) ; \]
\[ \text{tarea} = (x_{21} * y_{31} - x_{13} * y_{12})/2 ; \]

(f1, f2) at the center of triangles
\[ \text{f1t} = (f1(t(ih, 1)) + f1(t(ih, 2)) + f1(t(ih, 3))) / 3 ; \]
\[ \text{f2t} = (f2(t(ih, 1)) + f2(t(ih, 2)) + f2(t(ih, 3))) / 3 ; \]
\[ x(T), y(T) , \text{abb} \]
\[ xt = [x_{32} ; x_{12} ; x_{21}] ; \]
\[ yt = [y_{23} ; y_{31} ; y_{12}] ; \]
\[ \text{abb} = (81/40) * \mu * ((y_{23})^2 + (x_{32})^2 + (y_{31})^2 + (x_{13})^2 + y_{23} * y_{31} + x_{32} * x_{13})/\text{tarea} ; \]

Element right-hand side
\[ \text{lx} = (9/20) * \text{tarea} * \text{f1t} / \text{abb} ; \]
\[ \text{ly} = (9/20) * \text{tarea} * \text{f2t} / \text{abb} ; \]

Assembly
\[ b(it) = b(it) + [lx ; ly; lb] ; \]

Inserting the boundary conditions of Dirichlet

DirichletNodes = unique (dirichlet) ;
\[ [W, M] = u_d(coordinates(DirichletNodes,:)) ; \]
\[ R = \text{sparse}(\text{size}(W,1),3*\text{size}(coordinates, 1)) ; \]
for \( k = 0 : 1 \)
for \( l = 0 : 1 \)
\[ R(1 + l : 2 : \text{size}(M, 1), 3*\text{DirichletNodes}-1 + k) = \text{diag}(M(1 + l : 2 : \text{size}(M, 1), 1 + k)) ; \]
end
end

**Inserting the boundary conditions of Neumann**

if \( \text{isempty(neumann)} \)
\[ n = (coordinates(\text{neumann(:,2,:)})) - \text{coordinates}(\text{neumann(:,1,:)})) * [0,-1;1,0] ; \]
for \( j = 1 : \text{size(neumann, 1)} \)
\[ I = 3*\text{neumann}(j, [1, 1, 2, 2]) - [1, 0, 1, 0] ; \]
\[ \text{gm} = g(\text{sum(coordinates(\text{neumann(j,:,:)}))/2, n(j,:)/norm(n(j,:)))'} ; \]
\[ b(I) = b(I) + \text{norm(n(j,:))/2} ; \]
end
end

### 5. NUMERICAL RESULTS

This section is the fruit of the study that is done in the previous sections in this paper, with its two sides: mathematics and programming. So there is some numerical results of calculations with mixed finite element P1 bubble-P1 Method that will be presented later. A two-dimensional problem with the elastic square body with a hole \( \Omega = [0, 2] \times [0, 2] \setminus B(0, 1) \) (\( E = 2900 \) and \( \nu = 0.25 \)),is stretched at the top \( y = 2 \) with a surface load \( g = n \), where \( n \) denotes the outer normal to \( \partial \Omega \); the rest of the boundary is traction free [11]. By reason of symmetry since the domain is homogeneous,one will present the quarter of the domain that was discretized. The Dirichlet conditions are:\( h = 0 \) on \( [1, 2] \times 0 \) and \( 0 \times [1, 2] \) the forces charges are taking as \( f = 0 \) for all nodes.

The main aim of this numerical experiment is to test the stability of the divergence of the field of displacement \( u_h \), and compare it with the numerical
solution $\psi_{num}$. In fact, we will calculate the error $e = \left( \frac{\|\text{div} u_h - \psi_{num}\|}{np} \right)^{\frac{1}{2}}$ for three meshes, and we will see how this error behaves when the mesh size grows, that is when $h \to 0$. So from the tabular the error $e$ go to zero when $h$ is too small.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Number of nodes & 80 & 164 & 589 \\
\hline
Number of elements & 130 & 287 & 1099 \\
\hline
$h$ & 0.3 & 0.2 & 0.1 \\
\hline
error $e$ & 0.2252 & 0.2004 & 0.1699 \\
\hline
$\| u - u_h \|_{1,\Omega}$ & 0.0342 & 0.0298 & 0.0146 \\
\hline
$\| \psi - \psi_h \|_{0,\Omega}$ & 0.0567 & 0.0346 & 0.0264 \\
\hline
\end{tabular}
\end{table}

The example demonstrates how the mixed finite element P1 bubble-P1 method is more efficient than the ordinary one. Because it allows us to calculate the displacements and their divergences simultaneously, and that it guarantees the stability of these divergences on each node.

6. ACKNOWLEDGMENTS

The authors would like to appreciate the referees for giving us the several corrections. The authors declares that there is no conflict of interest regarding the publication of this paper.
Figure 2: Deformed mesh for membrane with hole $h = 0.2$

Figure 3: Deformed mesh for membrane with hole $h = 0.1$

REFERENCES


tertown, MA, 2014.

[6] V. Girault, P.A. Raviart, *Finite Element Approximation of the Navier-


[10] D. Yang, Iterative schemes for mixed finite element methods with appli-
cations to elasticity and compressible flow problems, *Numer. Math.*, 93
(2002), 177-200.

strip. Communication in talk at *Enumath Conference in Heidelberg*, 1997 (see also http://www.ibnm.uni-
hannover.de/Forschung/Pakantrag/Benchmarks/benchmark.html)