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1. INTRODUCTION

Recently, fractional differential equations (FDEs) have attracted great atten-
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tion. It has been proved that FDEs are valuable tools in modeling of many

phenomena in various fields of engineering, physics, and economics. For more

recent development on this topic, one can see the monographs of Hilfer [22],

Kilbas [25] and Podlubny [27]. There are some works on FDEs with Hadamard

fractional derivative, even if it has been studied many years ago (see for ex-

ample [2, 7, 8] ). A study of Hilfer type of equation has received a significant

amount of interests, we refer to [9, 10, 11, 22, 23, 24, 26].

Stability analysis is always one of the most important issues in the the-

ory of differential equations and their applications. Recently, Ulam stability

of FDEs has attracted increasing interest. The stability of functional equa-

tions was originally raised by Ulam in 1940 in a talk given at Wisconsin Uni-

versity. Thereafter, this type of stability is called the Ulam-Hyers stability

[5, 12, 14, 18]. In 1978, Rassias [18] provided a remarkable generalization of

the Ulam-Hyers stability of mappings by considering variables. The concept

of stability for a functional equation arises when we replace the functional

equation by an inequality which acts as a perturbation of the equation. The

stability properties of all kinds of equations have attracted the attention of

many mathematicians. In particular, the Ulam-Hyers stability and Ulam-

Hyers-Rassias stability have been taken up by a number of mathematicians

and the study of this area has developed to be one of the central subjects in

the mathematical analysis area. For more details on the Ulam- Hyers stability

and Ulam-Hyers-Rassias stability of differential equations, see [12, 20, 29, 30].

Delay differential equations (DDEs) have an extensive range of applications

in sciences, engineering and economics. DDE is a differential equation for an

unknown function which involves derivatives of the function and in which the

function, and possibly its derivative(s), occur with delay arguments. When

the derivative(s) occur with the delay arguments, the equation is known as

neutral delay differential equation (NDDE).

The pantograph type is one of the special types of DDEs, and growing at-

tention is given to its analysis and numerical solution. Pantograph type always

has the delay term fall after the initial value but before the desire approxima-

tion being calculated. When the delay term of pantograph type involved with

the derivative(s), the equation is named as neutral delay differential equation

of pantograph type.

The pantograph equations have been studied extensively (see,[6, 13, 17]
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and references therein) since they can be used to describe many phenomena

arising in number theory, dynamical systems, probability, quantum mechanics,

and electro dynamics. Recently, fractional pantograph differential equations

have been studied by many researchers. One of interesting subjects in this

area, is the investigation of the existence of solutions by fixed point theorems,

we refer to [6]. Vivek et.al. [28] studied dynamics and Ulam stability of pan-

tograph equations with Hilfer fractional derivative. Recently, Kassim et. al.

[16] investigated well-posedness and stability for a differential equations with

Hilfer-Hadamard fractional derivative. Unfortunately, existence, uniqueness

and Ulam stability of boundary value problem(BVP) for fractional neutral

pantograph equations with Hilfer-Hadamard derivative is still not studied.

The problem of the existence of solutions for FDEs with boundary conditions

has been recently treated in the literature in [2, 4, 21, 19].

Motivated by the above approach, the goal in the present paper is to study

existence, uniqueness and stability analysis of Hilfer-Hadamard type fractional

neutral pantograph equations with boundary conditions of the form






HD
α,β

1+
x(t) = f(t, x(t), x(λt),H D

α,β

1+
x(λt)), t ∈ J := [1, T ],

I
1−γ

1+
x(1) = a, I

1−γ

1+
x(T ) = b, γ = α+ β − αβ,

(1.1)

where HD
α,β

1+
is the Hilfer-Hadamard fractional derivative, 0 < α < 1, 0 ≤

β ≤ 1, 0 < λ < 1 and let X be a Banach space, f : J ×X ×X ×X → X is

given continuous function.

The outline of the paper is as follows. In Section 2, we give some basic def-

initions and results concerning the Hilfer-Hadamard fractional derivative. In

Section 3, we present our main result by using Schaefer’s fixed point theorem.

In Section 4, we discuss stability analysis.

2. PRELIMINARIES

In what follows we introduce definitions, notations, and preliminary facts

which are used in the sequel.

For more details, we refer to [1, 9, 10, 15, 22, 23, 24].

Definition 2.1. Let C[J,X] denotes the Banach space of continuous function

on [1, T ] with the norm
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‖x‖C := sup {x(t) : t ∈ J} .

We denote L1 {R+}, the space of Lebesgue integrable functions on J.

By Cγ,log[J,X] and C1
γ,log[J,X], we denote the weighted spaces of contin-

uous functions defined by

Cγ,log[J,X] := {f(t) : J → X|(log t)γf(t) ∈ C[J,X]} ,

with norm

‖f‖Cγ,log
= ‖(log t)γf(t)‖C ,

and

‖f‖Cn

γ,log
=

n−1
∑

k=0

∥

∥

∥
fk
∥

∥

∥

C
+ ‖fn‖Cγ,log

, n ∈ N.

Moreover, C0
γ,log[J,X] := Cγ,log[J,X].

Now, we give some results and properties of Hadamards fractional calculus.

Definition 2.2. [2, 8] The Hadamard fractional integral of order α for a

function h is defined as

Iα1+h(t) =
1

Γ(α)

∫ t

1

(

log
t

s

)α−1
h(s)

s
ds, α > 0,

provided the integral exists.

Notice that for all α,α1, α2 > 0 and each h ∈ C[J,X], we have Iα1+h ∈

C[J,X], and

(Iα1

1+
Iα2

1+
h)(t) = (Iα1+α2

1+
h)(t); for a.e. t ∈ J.

Definition 2.3. [2, 8] The Hadamard derivative of fractional order α for a

function h : [1,∞) → X is defined as

HD
α
1+h(t) =

1

Γ(n− α)

(

t
d

dt

)n ∫ t

1

(

log
t

s

)n−α−1
h(s)

s
ds,

n− 1 < α < n, n = ⌈α⌉+ 1,

where ⌈α⌉ denotes the integer part of real number α and log(·) = loge(·).

Let α ∈ (0, 1], γ ∈ [0, 1) and h ∈ C1−γ,log[J,X]. Then the following

expression leads to the left inverse operator as follows.

(HD
α
1+I

α
1+h)(t) = h(t); for all t ∈ [1, b].
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Moreover, if I1−α
1+

h ∈ C1
1−γ,log[J,X], then the following composition

(Iα1+ HD
α
1+h)(t) = h(t) −

(I1−α
1+

h)(1+)

Γ(α)
(log t)α−1; for all t ∈ [1, b].

In [22], R. Hilfer studied applications of a generalized fractional operator

having the Riemann-Liouville and Caputo derivatives as specific cases (see

also [23, 15]).

Definition 2.4. (Hilfer-Hadamard derivative).

Let 0 < α < 1, 0 ≤ β ≤ 1, h ∈ L1 {R+}, I
(1−α)(1−β)
1+

∈ C1
γ,log[J,X]. The

Hilfer-Hadamard fractional derivative of order α and type β of h is defined as

(HD
α,β

1+
h)(t) =

(

I
β(1−α)
1+

d

dt
I
(1−α)(1−β)
1+

h

)

(t); for a.e. t ∈ J. (2.1)

Properties: Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α+ β − αβ, and h ∈ L1 {R+}.

1. The operator (HD
α,β

1+
h)(t) can be written as

(HD
α,β

1+
h)(t) =

(

I
β(1−α)
1+

d

dt
I
1−γ

1+
h

)

(t) =
(

I
β(1−α)
1+ HD

γ

1+
h
)

(t);

for a.e. t ∈ J.

Moreover, the parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. The generalization (2.1) for β = 0, coincides with the Hadamard Riemann-

Liouville derivative and for β = 1 with the Hadamard Caputo derivative.

HD
α,0
1+

= HD
α
1+ , and HD

α,1
1+

= c
HD

α
1+ .

3. If HD
β(1−α)
1+

h exists and in L1 {R+}, then

(HD
α,β

1+
Iα1+h)(t) =

(

I
β(1−α)
1+ HD

β(1−α)
1+

h
)

(t); for a.e. t ∈ J.

Furthermore, if h ∈ Cγ,log[J,X] and I
1−β(1−α)
1+

h ∈ C1
γ,log[J,X], then

(HD
α,β

1+
Iα1+h)(t) = h(t); for a.e. t ∈ J.
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4. If HD
γ

1+
h exists and in L1 {R+}, then

(

Iα1+ HD
α,β

1+
h
)

(t) =
(

I
γ

1+ HD
γ

1+
h
)

(t) = h(t)−
I
1−γ

1+
h(1+)

Γ(γ)
(log t)γ−1;

for a.e. t ∈ J.

In order to solve our problem, the following spaces are presented

C
α,β
1−γ,log[J,X] =

{

f ∈ C1−γ,log[J,X],H D
α,β

1+
f ∈ C1−γ,log[J,X]

}

,

and

C
γ
1−γ,log[J,X] =

{

f ∈ C1−γ,log[J,X],H D
γ

1+
f ∈ C1−γ,log[J,X]

}

.

It is obvious that

C
γ
1−γ,log[J,X] ⊂ C

α,β
1−γ,log[J,X].

Lemma 2.5. Let α > 0, 0 ≤ β ≤ 1, so the homogeneous differential equation

with Hilfer-Hadamard fractional order

HD
α,β

1+
h(t) = 0

has a solution

h(t) = c0(log t)
γ−1 + c1(log t)

γ+2β−2 + c2(log t)
γ+2(2β)−3

+ · · ·+ cn(log t)
γ+n(2β)−(n+1).

Corollary 2.6. Let h ∈ C1−γ,log[J,X]. Then the linear problem

HD
α,β

1+
x(t) = h(t), t ∈ J := [1, b],

I
1−γ

1+
x(t)|t=1 = x0, γ = α+ β − αβ,

has a unique solution x ∈ L1 {R+} given by

x(t) =
x0

Γ(γ)
(log t)γ−1 +

1

Γ(α)

∫ t

1

(

log
t

s

)α−1

h(s)
ds

s
.

Lemma 2.7. Let f : J × X × X × X → X be a function such that f ∈

C1−γ,log[J,X] for any x ∈ C1−γ,log[J,X]. A function x ∈ C
γ
1−γ,log[J,X] is a

solution of the integral equation

x(t) =
a

Γ(γ)
(log t)γ−1
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+
(

b− a− I
1−β(1−α)
1+ f(T, x(T ), x(λT ),H D

α,β

1+ x(λT ))
)

Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1

+
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

f(s, x(s), x(λs),H D
α,β

1+
x(λs))

ds

s
, (2.2)

if and only if x is a solution of the Hilfer-Hadamard fractional neutral panto-

graph BVP

HD
α,β

1+
x(t) = f(t, x(t), x(λt),H D

α,β

1+
x(λt)), t ∈ J := [1, T ], λ ∈ (0, 1), (2.3)

I
1−γ

1+
x(1) = a, I

1−γ

1+
x(T ) = b, γ = α+ β − αβ. (2.4)

Proof. Assume x satisfies (2.2). Then Lemma 2.5 implies that

x(t) = c0(log t)
γ−1 + c1(log t)

γ+2β−2

+
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

f(s, x(s), x(λs),H D
α,β

1+
x(λs))

ds

s
.

From (2.4), a simple calculation gives

c0 =
a

Γ(γ)
,

c1 =
(

b− a− I
1−β(1−α)
1+

f(T, x(T ), x(λT ),H D
α,β

1+
x(λT ))

)

Γ(2β)

Γ(γ + 2β − 1)

1

(log T )2β−1
.

Hence, we get equation (2.2). Conversly, it is clear that if x satisfies equation

(2.2), then equations (2.3)-(2.4) hold.

Lemma 2.8. [31] Suppose 1 > α > 0, a > 0 and b > 0 and suppose u(t) is

nonnegative and locally integral on [1,+∞) with

u(t) ≤ a+ b

∫ t

1

(

log
t

s

)α−1

u(s)
ds

s
, t ∈ [1,+∞).

Then

u(t) ≤ a+

∫ t

1

[

∞
∑

n=1

(bΓ(α))n

Γ(nα)

(

log
t

s

)nα−1

a

]

ds

s
, t ∈ [1,+∞).
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Remark 2.9. Under the assumptions of Lemma 2.8, let u(t) be a nonde-

creasing function on [1,∞). Then we have

u(t) ≤ aEα,1

(

bΓ(α)(log t)α
)

,

where Eα,1 is the Mittag-leffler function defined by

Eα,1(z) =

∞
∑

k=0

zk

Γ(kα+ 1)
, z ∈ C.

3. MAIN RESULTS

Now we give our main existence result for problem (1.1). Before starting and

proving this result, we list the following conditions:

(C1) f : J ×X ×X ×X → X is continuous function.

(C2) There exist l, p, q, r ∈ C1−γ,log[J,X] with l∗ = supt∈J l(t) < 1 such that

|f(t, u, v, w)| ≤ l(t) + p(t) |u|+ q(t) |v|+ r(t) |w| ,

for t ∈ J , u, v, w ∈ X.

Theorem 3.1. Let conditions (C1),(C2) hold. Then the problem (1.1) has

at least one solution defined on J .

Proof. Consider the operator P : C1−γ,log[J,X] → C1−γ,log[J,X] defined by

(Px)(t) =
a

Γ(γ)
(log t)γ−1

+
(

b− a− I
1−β(1−α)
1+

f(T, x(T ), x(λT ),H D
α,β

1+
x(λT ))

)

Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1
(3.1)

+
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

f(s, x(s), x(λs),H D
α,β

1+
x(λs))

ds

s
. (3.2)

The equation (3.2) can be written as

(Px)(t) =
a

Γ(γ)
(log t)γ−1 +

(

b− a− I
1−β(1−α)
1+

Kx(T )
) Γ(2β)

Γ(γ + 2β − 1)
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(log t)γ+2β−2

(log T )2β−1
(3.3)

+
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kx(s)
ds

s
, (3.4)

where

Kx(t) = f(t, x(t), x(λt),H D
α,β

1+ x(λt))

= f(t, x(t), x(λt),Kx(t))

=H D
α,β

1+
x(t).

It is obvious that the operator P is well defined.

Step 1: P is continuous. Let xn be a sequence such that xn → x in

C1−γ,log[J,X]. Then for each t ∈ J,

∣

∣((Pxn)(t)− (Px)(t))(log t)1−γ
∣

∣

≤
(log t)1−γ

Γ(α)

∫ t

1

(

log
t

s

)α−1

|Kxn
(s)−Kx(s)|

ds

s

+
Γ(2β)

Γ(γ + 2β − 1)

(log t)2β−1

(log T )2β−1

(

1

Γ(1− β(1− α))

∫ T

1

(

log
T

s

)(1−β(1−α))−1

|Kxn
(s)−Kx(s)|

ds

s

)

≤

(

(log T )1−γ+α

Γ(α+ 1)
+

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))

)

‖Kxn
(·)−Kx(·)‖C1−γ,log

.

Since f is continuous(i.e. Kx is continuous), then we have

‖Pxn − Px‖C1−γ,log
→ 0 as n→ ∞.

Step 2: P maps bounded sets into bounded sets in C1−γ,log[J,X].

Indeed, it is enough to show that for η > 0, there exists a positive constant

l such that x ∈ Bη {x ∈ C1−γ,log[J,X] : ‖x‖ ≤ η}, we have ‖(Px)‖C1−γ,log
≤ l.

∣

∣(Px)(t)(log t)1−γ
∣

∣

≤
a

Γ(γ)
+

Γ(2β)

Γ(γ + 2β − 1)

(log t)2β−1

(log T )2β−1

(

b− a−
1

Γ(1− β(1− α))

∫ T

1

(

log
T

s

)(1−β(1−α))−1

|Kx(s)|
ds

s

)
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+
(log t)1−γ

Γ(α)

∫ t

1

(

log
t

s

)α−1

|Kx(s)|
ds

s

:= A1 +A2, (3.5)

and

|Kx(t)| = |f(t, x(t), x(λt),Kx(t))|

≤ l(t) + p(t) |x(t)|+ q(t) |x(λt)|+ r(t) |Kx(t)|

≤ l∗ + p∗ |x(t)|+ q∗ |x(λt)|+ r∗ |Kx(t)|

≤
l∗ + p∗ |x(t)|+ q∗ |x(λt)|

1− r∗
. (3.6)

From (3.5) and (3.6), we get

A1 =
a

Γ(γ)
+

Γ(2β)

Γ(γ + 2β − 1)
(b− a)−

Γ(2β)

Γ(γ + 2β − 1)

l∗(log T )1−β(1−α)

(1− r∗)Γ(2− β(1− α))

−
Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))

(p∗ + q∗)

1− r∗
‖x‖C1−γ,log

.

A2 =
l∗(log T )α+1−γ

(1− r∗)Γ(α + 1)
+

(log T )α+1−γ

(1− r∗)Γ(α+ 1)
(p∗ + q∗) ‖x‖C1−γ,log

.

Substituting A1, A2 in equation (3.5), we have

∣

∣(Px)(t)(log t)1−γ
∣

∣

≤
a

Γ(γ)
+

Γ(2β)

Γ(γ + 2β − 1)
(b− a)

+

(

(log T )α+1−γ

Γ(α+ 1)
−

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))

)

l∗

1− r∗

+

(

(log T )α+1−γ

Γ(α+ 1)
−

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))

)

(p∗ + q∗)

1− r∗
‖x‖C1−γ,log

:= l.

Step 3: P maps bounded sets into equicontinuous set of C1−γ,log[J,X].

Let t1, t2 ∈ J, t1 < t2 and x ∈ Bη. Using the fact f is bounded on the compact

set J ×Bη (these sup(t,x)∈J×Bη
|Kx(t)| := C <∞),

|(Px)(t2)− (Px)(t2)| ≤
a

Γ(γ)

(

(log t2)
γ−1 − (log t1)

γ−1
)
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+
(

b− a−
∣

∣

∣
I
1−β(1−α)
1+

Kx(T )
∣

∣

∣

) Γ(2β)

Γ(γ + 2β − 1)
[

(log t2)
γ+2β−2 − (log t1)

γ+2β−2

(log T )2β−1

]

+

∣

∣

∣

∣

∣

1

Γ(α)

∫ t2

1

(

log
t2

s

)α−1

Kx(s)
ds

s
−

1

Γ(α)

∫ t1

1

(

log
t1

s

)α−1

Kx(s)
ds

s

∣

∣

∣

∣

∣

≤
a

Γ(γ)

(

(log t2)
γ−1 − (log t1)

γ−1
)

+

(

b− a−
C(log T )1−β(1−α)

Γ(2− β(1− α))

)

Γ(2β)

Γ(γ + 2β − 1)
[

(log t2)
γ+2β−2 − (log t1)

γ+2β−2

(log T )2β−1

]

+
C

Γ(α+ 1)

(

log
t2

t1

)α

+
C

Γ(α)

∫ t1

1

[

(

log
t2

s

)α−1

−

(

log
t1

s

)α−1
]

ds

s
.

As t1 → t2, the right hand side of the above inequality tends to zero.

As a consequence of step 1 to 3, together with Arzela-Ascoli theorem, we can

conclude that P : C1−γ,log[J,X] → C1−γ,log[J,X] is continuous and completely

continuous.

Step 4: A priori bounds. Now it remains to show that the set

ω = {x ∈ C1−γ,log[J,X] : x = δ(Px), 0 < δ < 1}

is bounded set.

Let x ∈ ω, x = δ(Px) for some 0 < δ < 1. Thus for each t ∈ J . We have,

x(t) =

δ

[

a

Γ(γ)
(log t)γ−1 +

(

b− a− I
1−β(1−α)
1+

Kx(T )
) Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1

+
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kx(s)
ds

s

]

.

This implies by (C2)that for each t ∈ J , we have

∣

∣x(t)(log t)1−γ
∣

∣

≤
∣

∣(Px)(t)(log t)1−γ
∣

∣

≤
a

Γ(γ)
+

Γ(2β)

Γ(γ + 2β − 1)
(b− a)
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+

(

(log T )α+1−γ

Γ(α+ 1)
−

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))

)

l∗

1− r∗

+

(

(log T )α+1−γ

Γ(α+ 1)
−

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))

)

(p∗ + q∗)

1− r∗
‖x‖C1−γ,log

.

This shows that the set ω is bounded. As a consequence of Schaefer’s

fixed point theorem, we deduce that P has a fixed point which is a solution of

problem (1.1).

4. STABILITY ANALYSIS

In this section, for the Hilfer-Hadamard type fractional neutral pantograph

BVP (1.1), we adopt the definition in [20, 28] of the Ulam-Hyers stability,

generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and general-

ized Ulam-Hyers-Rassias stability.

Definition 4.1. The equation (1.1) is Ulam-Hyers stable if there exists a real

number Cf > 0 such that for each ǫ > 0 and for each solution z ∈ C
γ
1−γ,log[J,X]

of the inequality

∣

∣

∣HD
α,β

1+
z(t)− f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ǫ, t ∈ J,

there exists a solution x ∈ C
γ
1−γ,log[J,X] of equation (1.1) with

|z(t)− x(t)| ≤ Cf ǫ, t ∈ J.

Definition 4.2. The equation (1.1) is generalized Ulam-Hyers stable if

there exists ψf ∈ C([0,∞), [0,∞)), ψf (0) = 0 such that for each solution

z ∈ Cγ
1−γ,log[J,X] of the inequality

∣

∣

∣HD
α,β

1+ z(t)− f(t, z(t), z(λt),H D
α,β

1+ z(λt))
∣

∣

∣
≤ ǫ, t ∈ J,

there exists a solution x ∈ C
γ
1−γ,log[J,X] of equation (1.1) with

|z(t)− x(t)| ≤ ψf ǫ, t ∈ J.
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Definition 4.3. The equation (1.1) is Ulam-Hyers-Rassias stable with re-

spect to ϕ ∈ C1−γ,log[J,X] if there exists a real number Cf > 0 such that for

each ǫ > 0 and for each solution z ∈ C
γ
1−γ,log[J,X] of the inequality

∣

∣

∣HD
α,β

1+
z(t)− f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ǫϕ(t), t ∈ J,

there exists a solution x ∈ C
γ
1−γ,log[J,X] of equation (1.1) with

|z(t)− x(t)| ≤ Cf ǫϕ(t), t ∈ J.

Definition 4.4. The equation (1.1) is generalized Ulam-Hyers-Rassias stable

with respect to ϕ ∈ C1−γ,log[J,X] if there exists a real number Cf,ϕ > 0 such

that for each solution z ∈ C
γ
1−γ,log[J,X] of the inequality

∣

∣

∣HD
α,β

1+
z(t)− f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ϕ(t), t ∈ J,

there exists a solution x ∈ C
γ
1−γ,log[J,X] of equation (1.1) with

|z(t)− x(t)| ≤ Cf,ϕϕ(t), t ∈ J.

Remark 4.5. A function z ∈ C
γ
1−γ,log[J,X] is a solution of the inequality

∣

∣

∣HD
α,β

1+
z(t)− f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ǫ, t ∈ J,

if and only if there exists a function g ∈ C
γ
1−γ,log[J,X] (which depend on

solution x) such that

1. |g(t)| ≤ ǫ, t ∈ J ;

2. HD
α,β

1+
z(t) = f(t, z(t), z(λt),H D

α,β

1+
z(λt)) + g(t), t ∈ J .

Remark 4.6. Clearly,

1. Definition 4.1⇒ Definition 4.2.

2. Definition 4.3⇒ Definition 4.4.

We ready to prove our stability results for problem (1.1). The arguments

are based on the Banach contraction principle. First we list the following

conditions:
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(C3) There exist two positive constants K > 0 and L > 0 such that

|f(t, u, v, w) − f(t, u, v, w)| ≤ K (|u− u|+ |v − v|) + L |w − w| ,

for any u, v, w, u, v, w ∈ X and t ∈ J .

(C4) There exists an increasing function ϕ ∈ C1−γ,log[J,X] and there exists

λϕ > 0 such that for any t ∈ J

Iα1+ϕ(t) ≤ λϕϕ(t).

Lemma 4.7. Let conditions (C1),(C3) hold. If

2K

1− L

(

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))
+

(log T )1−γ+α

Γ(α+ 1)

)

< 1, (4.1)

then the problem (1.1) has a unique solution.

Proof. Consider the operator P : C1−γ,log[J,X] → C1−γ,log[J,X].

(Px)(t) =
a

Γ(γ)
(log t)γ−1 +

(

b− a− I
1−β(1−α)
1+

Kx(T )
)

Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1

+
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kx(s)
ds

s
.

It is clear that the fixed points of P are solutions of (1.1).

Let x, y ∈ C1−γ,log[J,X] and t ∈ J , then we have

∣

∣((Px)(t)− (Py)(t)) (log t)1−γ
∣

∣

≤
Γ(2β)

Γ(γ + 2β − 1)

(log t)2β−1

(log T )2β−1

(

1

Γ(1− β(1− α))

∫ T

1

(

log
T

s

)(1−β(1−α))−1

|Kx(s)−Ky(s)|
ds

s

)

+
(log t)1−γ

Γ(α)

∫ t

1

(

log
t

s

)α−1

|Kx(s)−Ky(s)|
ds

s
. (4.2)

and

|Kx(t)−Ky(t)| ≤ |f(t, x(t), x(λt),Kx(t))− f(t, y(t), y(λt),Ky(t))|
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≤ K (|x(t)− y(t)|+ |x(λt)− y(λt)|) + L |Kx(t)−Ky(t)|

≤
2K

1− L
|x(t)− y(t)| . (4.3)

By replacing (4.3) in the inequality (4.2), we get

∣

∣((Px)(t)− (Py)(t)) (log t)1−γ
∣

∣ ≤
Γ(2β)

Γ(γ + 2β − 1)
(

2K

1− L

1

Γ(1− β(1 − α))

∫ T

1

(

log
T

s

)(1−β(1−α))−1

|x(s)− y(s)|
ds

s

)

(log t)2β−1

(log T )2β−1
+

2K

1− L

(log t)1−γ

Γ(α)

∫ t

1

(

log
t

s

)α−1

|x(s)− y(s)|
ds

s

≤
2K

1− L

(

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1 − α))
+

(log T )1−γ+α

Γ(α+ 1)

)

‖x− y‖C1−γ,log
.

Hence,

‖(Px)− (Py)‖C1−γ,log

≤
2K

1− L

(

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1 − α))
+

(log T )1−γ+α

Γ(α+ 1)

)

‖x− y‖C1−γ,log
.

From (4.1), it follows that P has a unique fixed point which is solution of

problem (1.1).

Theorem 4.8. Let conditions (C1),(C3) and (4.1) hold, then the problem

(1.1) is Ulam-Hyers stable.

Proof. Let ǫ > 0 and let z ∈ C
γ
1−γ,log[J,X] be a function which satisfies the

inequality:

∣

∣

∣HD
α,β

1+
z(t)− f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ǫ, for any t ∈ J, (4.4)

and let x ∈ C
γ
1−γ,log[J,X] be the unique solution of the following Hilfer-

Hadamard type pantograph BVP

HD
α,β

1+
x(t) = f(t, x(t), x(λt),H D

α,β

1+
x(λt)), t ∈ J := [1, T ],

I
1−γ

1+
z(1) = a, I

1−γ

1+
z(T ) = b γ = α+ β − αβ,
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where 0 < α < 1, 0 ≤ β ≤ 1 and 0 < λ < 1.

Using Lemma 2.7, we obtain

x(t) = Ax +
1

Γ(α)

∫ T

1

(

log
t

s

)α−1

Kx(s)
ds

s

where

Ax =
a

Γ(γ)
(log t)γ−1+

(

b− a− I
1−β(1−α)
1+

Kx(T )
) Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1
.

On the other hand, if I1−γ

1+
x(T ) = I

1−γ

1+
z(T ) and I

1−γ

1+
x(1) = I

1−γ

1+
x(1), then

Ax = Az.

Indeed,

|Ax −Az| ≤
Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1

(

2K

1− L

)

I
1−β(1−α)
1+

|x(T )− z(T )|

= 0.

Thus, Ax = Az.

Then, we have

x(t) = Az +
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kx(s)
ds

s
.

By integration of the inequality (4.4), we obtain
∣

∣

∣

∣

∣

z(t)−Az −
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kz(s)
ds

s

∣

∣

∣

∣

∣

≤
ǫ(log T )α

Γ(α + 1)
.

We have

|z(t)− x(t)| ≤

∣

∣

∣

∣

∣

z(t)−Az −
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kz(s)
ds

s

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Γ(α)

∫ t

1

(

log
t

s

)α−1

[Kz(s)−Kx(s)]
ds

s

∣

∣

∣

∣

∣

≤
ǫ(log T )α

Γ(α+ 1)
+

(

2K

1− L

)

1

Γ(α)

∫ t

1

(

log
t

s

)α−1

|z(s)− x(s)|
ds

s
,

and to apply Lemma 2.8 and Remark 2.9, we obtain

|z(t)− x(t)| ≤
(log T )αEα,1(

2K
1−L

(log T )α)

Γ(α+ 1)
· ǫ

:= Cf ǫ.

Thus, the equation (1.1) is Ulam-Hyers stable.
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Theorem 4.9. Let conditions (C1), (C3), (C4) and (4.1) hold. Then, the

problem(1.1) is generalized Ulam-Hyers-Rassias stable.

Proof. Let z ∈ C
γ
1−γ,log[J,X] be solution of the inequality

∣

∣

∣HD
α,β

1+
z(t)− f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ǫϕ(t), t ∈ J, ǫ > 0, (4.5)

and let x ∈ C
γ
1−γ,log[J,X] be the unique solution of the following Hilfer-

Hadamard type BVP

HD
α,β

1+
x(t) = f(t, x(t), x(λt),H D

α,β

1+
x(λt)), t ∈ J := [1, T ],

I
1−γ

1+
z(1) = a, I

1−γ

1+
z(T ) = b γ = α+ β − αβ,

where 0 < α < 1, 0 ≤ β ≤ 1 and 0 < λ < 1.

Using Lemma 2.7, we obtain

x(t) = Az +
1

Γ(α)

∫ T

1

(

log
t

s

)α−1

Kx(s)
ds

s
,

where

Az =
a

Γ(γ)
(log t)γ−1+

(

b− a− I
1−β(1−α)
1+

Kz(T )
) Γ(2β)

Γ(γ + 2β − 1)

(log t)γ+2β−2

(log T )2β−1
.

By integration of the inequality (4.5), we get
∣

∣

∣

∣

∣

z(t)−Az −
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kz(s)
ds

s

∣

∣

∣

∣

∣

≤ ǫλϕϕ(t). (4.6)

On the other hand, we have

|z(t)− x(t)| ≤

∣

∣

∣

∣

∣

z(t)−Az −
1

Γ(α)

∫ t

1

(

log
t

s

)α−1

Kz(s)
ds

s

∣

∣

∣

∣

∣

+

(

2K

1− L

)

1

Γ(α)

∫ t

1

(

log
t

s

)α−1

|z(s)− x(s)|
ds

s

≤ ǫλϕϕ(t) +

(

2K

1− L

)

1

Γ(α)

∫ t

1

(

log
t

s

)α−1

|z(s)− x(s)|
ds

s
.

By applying Lemma 2.8 and Remark 2.9, we get

|z(t)− x(t)| ≤ ǫλϕϕ(t)Eα,1

(

2K

1− L
(log T )α

)

, t ∈ [1, T ].

Thus, the equation (1.1) is generalized Ulam-Hyers-Rassias stable.
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5. EXAMPLE

In this section, we give an example to illustrate the usefulness of our main

results.

Example 5.1. Let us consider consider the following Hilfer-Hadamard type

fractional neutral pantograph BVP

HD
α,β

1+
x(t) =

1

4
+

1

20

(

x(t) + x

(

1

2

)

+H D
α,β

1+
x

(

1

2

))

, t ∈ J := [1, e],

(5.1)

I
1−γ

1+
x(1) = 1, I

1−γ

1+
x(e) = 2, γ = α+ β − αβ. (5.2)

Notice that this problem is a particular case of (1.1).

Set

f(t, u, v, w) =
1

4
+

1

20
u+

1

20
v +

1

20
w,

for u, v, w ∈ X, and t ∈ J .

Clearly, the function f satisfies condition of Theorem 3.1.

For each u, v, w, u, v, w ∈ X and t ∈ J .

|f(t, u, v, w) − f(t, u, v, w)| ≤
1

20
(|u− u|+ |v − v|) +

1

20
|w − w| .

Hence, the condition (C3) is satisfied with K = L = 1
20 . Here T = e.

If α = 2
3 , β = 1

2 and choose γ = 5
6 .

Thus, condition from (4.1)

2K

1− L

(

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))
+

(log T )1−γ+α

Γ(α+ 1)

)

≈ 0.1925 < 1,

If α = 1
2 , β = 1

2 and choose γ = 3
4 .

2K

1− L

(

Γ(2β)

Γ(γ + 2β − 1)

(log T )1−β(1−α)

Γ(2− β(1− α))
+

(log T )1−γ+α

Γ(α+ 1)

)

≈ 0.2123 < 1,

It follows from Lemma 4.7 that the problem (5.1)-(5.2) has a unique so-

lution. Moreover, Theorem 4.8 implies that the problem (5.1)-(5.2) is Ulam-

Hyers stable.
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