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1. INTRODUCTION AND PRELIMINARIES

The studies on vector valued sequence spaces are done by Rath and Srivas-
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tava [25], Das and Choudhary [3], Tripathy and Sen [28], Et et al. [5] and

many others. The scope for the studies on sequence spaces was extended on

introducing the notion of associated multiplier sequences. Goes and Goes [10]

defined the differentiated sequence space dE and integrated sequence space
∫

E for a given sequence space E with the help of multiplier sequences (k−1)

and (k), respectively. The studies on the multiplier sequence spaces are done

by Çolak [1] and many others. Recently, Kórus [14] studied some recent re-

sults concerning Λ2-strong convergence numerical sequences. He gave a new

appropriate definition for the Λ2-strong convergence. Moreover, Kórus [15]

generalized the results on the L1-convergence of Fourier series. In [16], he also

studied the uniform convergence of mearurable functions by extended results

of Móricz [19] and gave examples for appropriate functions.

Let w be the set of all sequences of real or complex numbers and l∞, c and

c0 be the linear spaces of bounded, convergent and null sequences x = (xk)

with complex terms, respectively, normed by ||x||∞ = supk |xk|, where k ∈ N,

the set of positive integers.

Let q1 and q2 be seminorms on a vector space X. Then q1 is said to

be stronger than q2 if whenever (xk) is a sequence such that q1(xk) → 0,

then q2(xk) → 0 also. If each is stronger than the others q1 and q2 are said

to be equivalent (see [29]). Throughout the paper w(X), c(X), c0(X) and

l∞(X) will represent the spaces of all, convergent, null and bounded X valued

sequence spaces. For X = C, the field of complex numbers, these represent the

corresponding scalar valued sequence spaces. The zero sequence is denoted by

θ = (0, 0, · · · , 0), where θ is the zero element of X.

The notion of difference sequence spaces was introduced by Kızmaz [13],

who studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion

was further generalized by Et and Çolak [6] by introducing the spaces l∞(∆n),

c(∆n) and c0(∆
n). Recently, Dutta [4] introduced and studied the following

difference sequence spaces:

Let n, m be non-negative integers, then for Z = l∞, c and c0, we have

sequence spaces,

Z(∆n
(m)) = {x = (xk) ∈ w : (∆n

(m)xk) ∈ Z},

where ∆n
(m)x = (∆n

(m)xk) = (∆n−1
(m) xk − ∆n−1

(m) xk−m) and ∆0
(m)xk = xk for all
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k ∈ N which is equivalent to the following binomial representation

∆n
(m)xk =

n
∑

v=0

(−1)v

(

n

v

)

xk−mv.

Taking m = n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) introduced and

studied by Kızmaz [13].

An Orlicz function M is a function, which is continuous, non-decreasing

and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define

the following sequence space,

ℓM =
{

x = (xk) ∈ w :
∞
∑

k=1

M
( |xk|

ρ

)

< ∞, for some ρ > 0
}

which is called as an Orlicz sequence space. The space ℓM is a Banach space

with the norm

||x|| = inf
{

ρ > 0 :
∞
∑

k=1

M
( |xk|

ρ

)

≤ 1
}

.

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz func-

tion. A Musielak-Orlicz function M = (Mk) is said to satisfy ∆2-condition if

there exist constants a, K > 0 and a sequence c = (ck)
∞
k=1 ∈ l1+ (the positive

cone of l1) such that the inequality

Mk(2u) ≤ KMk(u) + ck

hold for all k ∈ N and u ∈ R
+, whenever Mk(u) ≤ a. For more details about

sequence spaces (see [20], [22], [23], [24]) and references therein.

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix

of real or complex numbers ank, where n, k ∈ N. Then we say that A defines

a matrix mapping from X into Y if for every sequence x = (xk) ∈ X, the

sequence Ax = {An(x)} and the A-transform of x is in Y , where

An(x) =
∑

k

ankxk (n ∈ N). (1.1)

By (X,Y ), we denote the class of all matrices A such that A : X → Y . Thus,

A ∈ (X,Y ) if and only if the series on the right-hand side of (1.1) converges

for each n ∈ N and every x ∈ X and we have Ax ∈ Y for all x ∈ X.
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For a sequence space X , the matrix domain XA of an infinite matrix A is

defined by

XA = {x = (xk) ∈ w : Ax ∈ X} (1.2)

The approach constructing a new sequence space by means of the matrix

domain of a particular limitation method has been employed by several authors

[26].

The concept of 2-normed spaces was initially developed by Gähler [9] in the

mid of 1960’s, while that of n-normed spaces one can see in Misiak [18]. Since

then many others have studied this concept and obtained various results (see

[11]). Let n ∈ N and X be a linear space over the field R of reals of dimension

d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn satisfying the

following four conditions:

1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent

in X,

2. ||x1, x2, · · · , xn|| is invariant under permutation,

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ R, and

4. ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called an n-norm on X and the pair (X, ||·, · · · , ·||) called a n-normed space

over the field R.

Example 1.1. We may take X = R
n being equipped with the n-norm

||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned

by the vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E = |det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ R
n for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||)

be an n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly

independent set in X. Then the function ||·, · · · , ·||∞ on Xn−1 defined by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
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A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to

some L ∈ X if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy

if

lim
k,p→∞

||xk − xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be

complete with respect to the n-norm. Any complete n-normed space is said

to be n-Banach space.

Let X be a linear metric space. A function p : X → R is called paranorm,

if

1. p(x) ≥ 0, for all x ∈ X;

2. p(−x) = p(x), for all x ∈ X;

3. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X;

4. if (σn) is a sequence of scalars with σn → σ as n → ∞ and (xn) is a

sequence of vectors with p(xn−x) → 0 as n → ∞, then p(σnxn−σx) →

0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and

the pair (X, p) is called a total paranormed space. It is well known that the

metric of any linear metric space is given by some total paranorm (see [29],

Theorem 10.4.2, P-183).

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E , whenever

(xk) ∈ E and for all sequence (αk) of scalars such that (αk) ≤ 1 for all k ∈ N.

A sequence space E is said to be symmetric if (xn) ∈ E implies (xπ(n)) ∈ E,

where π(n) is a permutation of elements of N.

A sequence space E is said to be sequence algebra if xy ∈ E whenever

x, y ∈ E.

Lemma 1.2. [12] A sequence space E is solid implies E is monotone.
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Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded

sequence of positive real numbers and u = (uk) be a sequence of positive reals

such that uk 6= 0 for all k, X be a seminormed space over the field C of complex

numbers with the seminorm qk for each k ∈ N, A = (ank) be an infinite matrix

and (X, ||·, · · · , ·||) is an n−normed space. Let λ = (λn) be a non-decreasing

sequence of positive numbers such that λn+1 ≤ λn + 1, λ1 = 1, λn → ∞ as

n → ∞ and In = [n − λn + 1, n]. Then for every z1, · · · , zn−1 ∈ X, we define

the following sequence spaces in the present paper:

wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖) =
{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0

as n → ∞, for some ρ > 0

}

,

wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) =

{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0

as n → ∞, for some ρ > 0 and L ∈ X

}

,

wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖) =
{

x = (xk) ∈ w(X) : sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0

}

.

If we take M(x) = x, we get

wλ
0 (A,∆

n
(m), Q, u, p, ‖., ..., .‖) =

{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ank

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0
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as n → ∞, for some ρ > 0

}

,

wλ(A,∆n
(m), Q, u, p, ‖., ..., .‖) =

{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ank

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0

as n → ∞, for some ρ > 0 and L ∈ X

}

,

wλ
∞(A,∆n

(m), Q, u, p, ‖., ..., .‖) =
{

x = (xk) ∈ w(X) : sup
n

1

λn

∑

k∈In

ank

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

< ∞,

for some ρ > 0

}

.

If we take p = (pk) = 1 for all k ∈ N, we have

wλ
0 (M, A,∆n

(m), Q, u, ‖., ..., .‖)
{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]

→ 0

as n → ∞, for some ρ > 0

}

,

wλ(M, A,∆n
(m), Q, u, ‖., ..., .‖) =

{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]

→ 0

as n → ∞, for some ρ > 0 and L ∈ X

}

,

wλ
∞(M, A,∆n

(m), Q, u, ‖., ..., .‖) =
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{

x = (xk) ∈ w(X) : sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]

< ∞,

for some ρ > 0

}

.

If we take M(x) = x and u = e = (1, 1, 1, · · · , 1) then these spaces reduces to

wλ
0 (A,∆

n
(m), Q, p, ‖., ..., .‖) =

{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ank

[

qk

(

∥

∥

∥

∆n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0

as n → ∞, for some ρ > 0

}

,

wλ(A,∆n
(m), Q, u, p, ‖., ..., .‖) =

{

x = (xk) ∈ w(X) :
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

∆n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0

as n → ∞, for some ρ > 0 and L ∈ X

}

,

wλ
∞(A,∆n

(m), Q, u, p, ‖., ..., .‖) =
{

x = (xk) ∈ w(X) : sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

∆n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

< ∞, for some ρ > 0

}

.

Throughout the paper, we shall use the following inequality. If 0 < pk ≤

sup pk = H, K = max(1, 2H−1), then

|ak + bk|
pk ≤ K{|ak|

pk + |bk|
pk} (1.3)

for all k and ak, bk ∈ C. Also, |a|pk ≤ max(1, |a|H ), for all a ∈ C.

The main purpose of this paper is to introduce vector-valued sequence

spaces by using infinite matrix, seminorm and a sequence of Orlicz functions.

We show that these spaces are complete paranormed spaces when the base
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space is n-Banach space and investigate these spaces for solidity, symmetricity,

monotonicity and sequence algebras. We also make an effort to obtain some

relation between these spaces as well as prove some inclusion results. Finally,

we study statistical convergence of these spaces.

2. MAIN RESULTS

Theorem 2.1. Let M = (Mk) be a sequence of Orlicz functions, p = (pk)

be a bounded sequence of strictly positive real numbers and u = (uk) be a se-

quence of strictly positive real numbers, then the spaces wλ
0 (M, A,∆n

(m), Q, u, p,

‖., ..., .‖), wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) and w∞

∞(M, A,∆n
(m), Q, u, p,

‖., ..., .‖) are linear spaces over the real field R.

Proof. Let x = (xk), y = (yk) ∈ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖) and α, β ∈

R. Then there exist positive real numbers ρ1 and ρ2 such that

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞

and

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)yk

ρ2
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since Mk is non-decreasing and convex by using

inequality (1.3), we have

1

λn

∑

k∈In

ankMk

[

qk

(
∥

∥

∥

uk∆
n
(m)(αxk + βyk)

ρ3
, z1, ..., zn−1

∥

∥

∥

)]pk

≤K
1

λn

∑

k∈In

1

2pk
ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk

+K
1

λn

∑

k∈In

1

2pk
ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)yk

ρ2
, z1, ..., zn−1

∥

∥

∥

)]pk

≤K
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk
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+K
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)yk

ρ2
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞.

Thus, αx+ βy ∈ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖). Hence, wλ
0 (M, A,∆n

(m), Q,

u, p, ‖., ..., .‖) is a linear space. Similarly, we can prove wλ(M, A,∆n
(m), Q,

u, p, ‖., ..., .‖) and wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖) are linear spaces over the

real field R.

Theorem 2.2. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be

a bounded sequence of strictly positive real numbers and u = (uk) be a sequence

of strictly positive real numbers. Then wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖) is a

paranormed space with the paranorm

g(x) =

m
∑

i=1

q(xi) + inf

{

(ρ)
pk
H :

sup
n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1,

for some ρ > 0

}

,

where H = max(1, supk pk) < ∞.

Proof. (i) Clearly, g(x) ≥ 0, for x = (xk) ∈ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Since Mk(θ) = 0, we get g(θ) = 0.

(ii) g(−x) = g(x),

(iii) Let x = (xk), y = (yk) ∈ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖) then, there

exist ρ1, ρ2 > 0 such that

sup
n

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

≤ 1

and

sup
n

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)yk

ρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

≤ 1.
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Let ρ = ρ1 + ρ2, then by Minkowski’s inequality, we have

sup
n

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(xk + yk)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

≤ sup
n

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(xk + yk)

ρ1 + ρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

≤

(

ρ1
ρ1 + ρ2

)

sup
n

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

+

(

ρ2
ρ1 + ρ2

)

sup
n

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)yk

ρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

,

and thus

g(x+ y) =

m
∑

i=1

q(xi + yi) + inf

{

(ρ1 + ρ2)
pk
H :

sup
n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(xk + yk)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1, for some ρ > 0

}

≤

m
∑

i=1

q(xi) + inf

{

(ρ1)
pk
H :

sup
n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1, for some ρ1 > 0

}

+
m
∑

i=1

q(yi) + inf

{

(ρ2)
pk
H :

sup
n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)yk

ρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1, for some ρ2 > 0

}

≤g(x) + g(y).
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Finally, we prove that scalar multiplication is continuous. Let λ be any com-

plex number by definition

g(λx) =
m
∑

i=1

q(λxi) + inf

{

(ρ)
pk
H : sup

n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(λxk)

ρ
, z1,

· · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1, for some ρ > 0

}

≤|λ|
m
∑

i=1

q(xi) + inf

{

(|λ|t)
pk
H : sup

n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

t
, z1,

· · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1, for some ρ > 0

}

,

where t = ρ
|λ| . Since |λ|pk ≤ max(1, |λ| sup pk). This completes the proof.

Theorem 2.3. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be

a bounded sequence of strictly positive real numbers and u = (uk) be a sequence

of strictly positive real numbers. If (X, ‖., ..., .‖) is n-Banach space, then the

spaces wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖), wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) and

wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖) are complete paranormed spaces, paranormed

defined by g.

Proof. Suppose (xn) is a Cauchy sequence in wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖),

where xn = (xnk )
∞
k=1 for all n ∈ N. So that g(xi − xj) → 0 as i, j → ∞. Sup-

pose ǫ > 0 is given and let s and x0 be such that ǫ
sx0

> 0 and xs > 0. Since

g(xi − xj) → 0 as i, j → ∞ which means that there exists n0 ∈ N such that

g(xi − xj) <
ǫ

sx0
, for all i, j ≥ n0.

This gives g(xi1 − xj1) <
ǫ

sx0
and

inf

{

(ρ)
pk
H :

sup
n≥1

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(x

i
k − xjk)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1, for some ρ > 0

}

<
ǫ

sx0
. (2.1)
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It shows that (xi1) is a Cauchy sequence in X. Therefore (xi1) is convergent in

X because X is complete. Suppose lim
i→∞

xi1 = x1 then lim
j→∞

g(xi1 − xj1) <
ǫ

sx0
,

we get

g(xi1 − x1) <
ǫ

sx0
.

Now from (2.1), we have
(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(x

i
k − xjk)

g(xi − xj)
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

≤ 1.

This implies that

(

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(x

i
k − xjk)

g(xi − xj)
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

≤ 1 ≤ Mk

(sx0
2

)

,

and thus

‖uk∆
n
(m)x

i
k − uk∆

n
(m)x

j
k, z1, ..., zn−1‖ ≤

(sx0
2

)( ǫ

sx0

)

=
ǫ

2

which shows that (uk∆
n
(m)x

i
k) is a Cauchy sequence in n-Banach spaceX for all

k ∈ N. Therefore, (uk∆
n
(m)x

i
k) converges in X. Suppose lim

i→∞
uk∆

n
(m)x

i
k = yk

for all k ∈ N.

Also, we have lim
i→∞

∆n
(m)x

i
2 = y1 − x1. On repeating the same procedure,

we obtain lim
i→∞

∆n
(m)x

i
k+1 = yk − xk for all k ∈ N. Therefore, by continuity of

Mk, we get

lim
j→∞

sup
n≥1

(

1

λn

∑

n∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)(x

i
k − xjk)

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1.

Let i ≥ n0 and taking infimum of each ρ’s, we have

g(xi − x) < ǫ.

So (xi − x) ∈ wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖). Hence, x = xi − (xi − x) ∈

wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖), since wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖) is a

linear space. Hence, wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖) is a complete para-

normed space. Similarly, we can prove the spaces wλ
0 (M, A,∆n

(m), Q, u, p,

‖., ..., .‖) and wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) are complete paranormed spaces.
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Theorem 2.4. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be

a bounded sequence of strictly positive real numbers and u = (uk) be a sequence

of strictly positive real numbers. If sup
k

[Mk(x)]
pk < ∞ for all fixed x > 0, then

wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖) ⊆ wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Proof. Let x = (xk) ∈ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖), then there exists

positive number ρ1 and z1, ..., zn−1 ∈ X such that

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞.

Define ρ = 2ρ1. Since Mk is non-decreasing and convex so by using inequality

(1.3), we have

sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

= sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk + L− L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

≤ K sup
n

1

λn

∑

k∈In

1

2pk
ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk

+K sup
n

1

λn

∑

k∈In

1

2pk
ankMk

[

qk

(

∥

∥

∥

L

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk

≤ K sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk

+K sup
n

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

L

ρ1
, z1, ..., zn−1

∥

∥

∥

)]pk

< ∞.

Hence, x = (xk) ∈ wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Theorem 2.5. Let 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ and M =

(Mk),M
′ = (M ′

k) be two sequences of Orlicz functions satisfying ∆2-condition,

then we have

(i) wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖)

⊂ wλ
0 (M◦M′, A,∆n

(m), Q, u, p, ‖., ..., .‖);
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(ii) wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖)

⊂ wλ(M◦M′, A,∆n
(m), Q, u, p, ‖., ..., .‖);

(iii) wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖)

⊂ wλ
∞(M◦M′, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Proof. Let x = (xk) ∈ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖), then we have

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞.

Let ǫ > 0 and choose δ with 0 < δ < 1 such that Mk(t) < ǫ for 0 ≤ t ≤ δ. Let

yk = ankM
′
k

[

qk

(

∥

∥

∥

uk∆
n
(m)

xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]

for all k ∈ N. We can write

1

λn

∑

k∈In

ankMk[yk]
pk =

1

λn

∑

k∈In,yk≤δ

ankMk[yk]
pk +

1

λn

∑

k∈In,yk>δ

ankMk[yk]
pk .

So we have

1

λn

∑

k∈In,yk≤δ

ankMk[yk]
pk ≤ [Mk(1)]

H 1

λn

∑

k∈In,yk≤δ

ankMk[yk]
pk (2.2)

≤ [Mk(2)]
H 1

λn

∑

k∈In,yk≤δ

ankMk[yk]
pk .

For yk > δ, yk < yk
δ

< 1 + yk
δ
. Since M ′

ks are non-decreasing and convex, it

follows that

Mk(yk) < Mk

(

1 +
yk
δ

)

<
1

2
Mk(2) +

1

2
Mk

(2yk
δ

)

.

Since M = (Mk) satisfies ∆2-condition, we can write

Mk(yk) <
1

2
T
yk
δ
Mk(2) +

1

2
T
yk
δ
Mk(2) = T

yk
δ
Mk(2).

Hence,

1

λn

∑

k∈In,yk>δ

ankMk[yk]
pk

≤ max
(

1,
(

T
Mk(2)

δ

)H) 1

λn

∑

k∈In,yk>δ

ank[yk]
pk . (2.3)
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From equation (2.2) and (2.3) we have x = (xk) ∈ w0(M◦M′, λ,∆n
(m), Q, u, p,

‖., ..., .‖). This completes the proof of (i). Similarly, we can prove that wλ(M,

A,∆n
(m), Q, u, p, ‖., ..., .‖) ⊂ wλ(M◦M′, A,∆n

(m), Q, u, p, ‖., ..., .‖) and wλ
∞(M,

A,∆n
(m), Q, u, p, ‖., ..., .‖) ⊂ wλ

∞(M◦M′, A,∆n
(m), Q, u, p, ‖., ..., .‖).

Theorem 2.6. Let 0 < h = inf pk = pk < sup pk = H < ∞. Then for a

sequence of Orlicz functions M = (Mk) which satisfies ∆2-condition, we have

(i) w0(λ,∆
n
(m), Q, u, p, ‖., ..., .‖) ⊂ wλ

0 (M, A,∆n
(m), Q, u, p, ‖., ..., .‖);

(ii) w(λ,∆n
(m), Q, u, p, ‖., ..., .‖) ⊂ wλ(M, A,∆n

(m), Q, u, p, ‖., ..., .‖);

(iii) w∞(λ,∆n
(m), Q, u, p, ‖., ..., .‖) ⊂ wλ

∞(M, A,∆n
(m), Q, u, p, ‖., ..., .‖).

Proof. It is easy to prove so we omit the details.

Theorem 2.7. Let 0 < h = inf pk = pk < sup pk = H < ∞. Then for a

sequence of Orlicz functions M = (Mk) which satisfies ∆2-condition, we have

(i) wλ
0 (M, A,∆n−1

(m) , Q, u, p, ‖., ..., .‖) ⊂ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖);

(ii) wλ(M, A,∆n−1
(m) , Q, u, p, ‖., ..., .‖) ⊂ wλ(M, A,∆n

(m), Q, u, p, ‖., ..., .‖);

(iii) wλ
∞(M, A,∆n−1

(m) , Q, u, p, ‖., ..., .‖) ⊂ wλ
∞(M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Proof. Here we prove the result for wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖) and for

other cases it will follow on applying similar arguments. Let x = (xk) ∈

wλ
0 (M, A,∆n−1

(m) , Q, u, p, ‖., ..., .‖). Then there exists ρ > 0 and z1, ..., zn−1 ∈ X

such that

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n−1
(m) xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞. (2.4)

On considering 2ρ, by the convexity of Orlicz function we have

1
λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

2ρ
, z1, · · · , zn−1

∥

∥

∥

)]

≤
1

2

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n−1
(m) xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]

+
1

2

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n−1
(m) xk−m

ρ
, z1, · · · , zn−1

∥

∥

∥

)]

.

Hence, we have
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1
λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

2ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ K

{

1

2

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

+
1

2

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
}

.

Then using (2.4), we get

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

2ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞.

Thus, wλ
0 (M, A,∆n−1

(m) , Q, u, p, ‖., ..., .‖) ⊂ wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Theorem 2.8. Let 0 ≤ pk ≤ sk for all k and let ( sk
pk
) be bounded. Then

wλ(M, A,∆n
(m), Q, u, s, ‖., ..., .‖) ⊆ wλ(M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Proof. Let x = (xk) ∈ wλ(M, A,∆n
(m), Q, u, s, ‖., ..., .‖), write

tk = ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk

ρ
, z1, ..., zn−1

∥

∥

∥

)]sk

and µk = pk
sk

for all k ∈ N. Then 0 < µk ≤ 1 for all k ∈ N. Take 0 < µ ≤ µk

for k ∈ N. Define sequences (vk) and (wk) as follows:

For tk ≥ 1, let vk = tk and wk = 0 and for tk < 1, let vk = 0 and wk = tk.

Then clearly for all k ∈ N, we have

tk = vk + wk, tµk

k = vµk

k + wµk

k .

Now it follows that vµk

k ≤ vk ≤ tk and wµk

k ≤ wµ
k . Therefore,

1

λn

∑

k∈In

tµk

k =
1

λn

∑

k∈In

(vµk

k + wµk

k )

≤
1

λn

∑

k∈In

tk +
1

λn

∑

k∈In

wµ
k .

Now for each k,

1

λn

∑

k∈In

wµ
k =

∑

k∈In

( 1

λn
wk

)µ( 1

λn

)1−µ
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≤
(

∑

k∈λn

[( 1

λn
wk

)µ] 1
µ
)µ( ∑

k∈In

[( 1

λn

)1−µ] 1
1−µ
)1−µ

=
( 1

λn

∑

k∈In

wk

)µ

and so
1

λn

∑

k∈In

tµk

k ≤
1

λn

∑

k∈In

tk +
( 1

λn

∑

k∈In

wk

)µ

.

Hence, x = (xk) ∈ wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖). This completes the proof

of the theorem.

Theorem 2.9. (i) If 0 < inf pk ≤ pk ≤ 1 for all k ∈ N, then

wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) ⊆ wλ(M, A,∆n

(m), Q, u, ‖., ..., .‖).

(ii) If 1 ≤ pk ≤ sup pk = H < ∞, for all k ∈ N, then

wλ(M, A,∆n
(m), Q, u, ‖., ..., .‖) ⊆ wλ(M, A,∆n

(m), Q, u, p, ‖., ..., .‖).

Proof. (i) Let x = (xk) ∈ wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖), then

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

→ 0 as n → ∞.

Since 0 < inf pk ≤ pk ≤ 1. This implies that

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]

≤
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

.

Thus, x = (xk) ∈ wλ(M, A,∆n
(m), Q, u, ‖., ..., .‖)

(ii) Let pk ≥ 1 for each k and supk pk < ∞. Let x = (xk) ∈ wλ(M, A,∆n
(m),

Q,u, ‖., ..., .‖). Then for each 0 < ǫ < 1 there exists a positive integer N and

z1, ..., zn−1 ∈ X such that

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]

≤ ǫ < 1 for all n ≥ N.

This implies that
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1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

≤
1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]

.

Therefore, x = (xk) ∈ wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖). This completes the

proof.

Theorem 2.10. If 0 < inf pk ≤ pk ≤ sup pk = H < ∞, for all k ∈ N, then

wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) = wλ(M, A,∆n

(m), Q, u, ‖., ..., .‖).

Proof. It is easy to prove so we omit the details.

Theorem 2.11. The spaces wλ
0 (M, A,∆n

(m), Q, u, ‖., ..., .‖), wλ(M, A,∆n
(m),

Q,u, ‖., ..., .‖) and wλ
∞(M, A,∆n

(m), Q, u, ‖., ..., .‖) are not monotone and as

such are not solid in general.

The proof follows from the following example.

Example 2.12. Let n = 2, m = 3, pk = 1 for all k odd and pk = 2 for all

k even, uk = 1, qk = |x|, λn = (1, 2, ..., n) for all n ∈ N and Mk(x) = x2 for

all k ≥ 1 and for all x ∈ [0,∞). Consider the n-normed space as defined in

Example 1.1. Then ∆2
(3) = xk − 2xk−3 + xk−6 for all k ∈ N. Consider the

J th step space of a sequence space E defined as, for (xk), (yk) ∈ EJ implies

that yk = xk for all k odd and yk = 0 for k even. Consider x = k. Then

x ∈ wλ(M, A,∆2
(3), Q, u, ‖., ..., .‖) but its J th canonical pre-image does not

belong to wλ(M, A,∆2
(3), Q, u, ‖., ..., .‖). Hence, the space is not monotone

and as such are not solid in general. Similarly, for the other spaces.

Theorem 2.13. The spaces wλ
0 (M, A,∆n

(m), Q, u, ‖., ..., .‖), wλ(M, A,∆n
(m),

Q,u, ‖., ..., .‖) and wλ
∞(M, A,∆n

(m), Q, u, ‖., ..., .‖) are not symmetric in gen-

eral.

To show that the spaces are not symmetric in general, consider the follow-

ing example.

Example 2.14. Let n = 2, m = 2, pk = 2 for all k odd and pk = 3 for

all k even, uk = 1, qk = |x|, λn = (1, 2, ..., n) for all n ∈ N and Mk(x) = x2
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for all k ≥ 1 and for all x ∈ [0,∞). Consider the n-normed space as defined

in Example 1.1. Then ∆2
(2) = xk − 2xk−2 + xk−4 for all k ∈ N. Consider

the sequences x = (xk) defined as xk = k for k odd and xk = 0 for k even.

Then ∆2
(2) = 0, for all k ∈ N. Hence, (xk) ∈ wλ(M, A,∆2

(2), Q, u, p, ‖., ..., .‖).

Consider the rearranged sequence, (yk) of (xk) defined as

(yk) = (x1, x3, x2, x4, x5, x7, x6, x8, x9, x11, x10, x12, ...).

Then (yk) /∈ wλ(M, A,∆2
(2), Q, u, p, ‖., ..., .‖). Hence, wλ(M, A,∆2

(2), Q, u, p,

‖., ..., .‖) is not symmetric in general. Similarly, we can prove for others spaces.

Theorem 2.15. The following spaces are not sequence algebras in general:

wλ
0 (M, A,∆n

(m), Q, u, p, ‖., ..., .‖), wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖) and

w∞(M, λ,∆n
(m), Q, u, p, ‖., ..., .‖).

The proof follows from the following example.

Example 2.16. Let n = 2, m = 1, pk = 3 for all k, uk = 1, qk = |x|,

λn = (1, 2, ..., n) for all n ∈ N and Mk(x) = x7 for k ∈ N and for all x ∈

[0,∞). Consider the n-normed space as defined in Example 1.1. Then ∆2
(1) =

xk − 2xk−1 + xk−2 for all k ∈ N. Let (xk) = (k) and (yk) = (k) defined as

xk = k for k odd and xk = 0 for k even. Then ∆2
(1) = 0, for all k ∈ N.

Then x, y ∈ wλ
0 (M, A,∆2

(1), Q, u, ‖., ..., .‖) but /∈ wλ(M, A,∆2
(1), Q, u, ‖., ..., .‖)

and wλ
∞(M, A,∆2

(1), Q, u, ‖., ..., .‖). Hence, the space wλ
0 (M, A,∆2

(1), Q, u, p,

‖., ..., .‖) is not sequence algebras in general.

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [7] and Schoen-

berg [27] independently. Over the years and under different names, statistical

convergence has been discussed in the theory of Fourier analysis, ergodic the-

ory and number theory. Later on, it was further investigated from the sequence

space point of view and linked with summability theory by Fridy [8], Connor

[2], Mursaleen et al. [21] and many others. In recent years, generalizations of

statistical convergence have appeared in the study of strong integral summa-

bility and the structure of ideals of bounded continuous functions on locally
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compact spaces. Statistical convergence and its generalizations are also con-

nected with subsets of the Stone-Cech compactification of natural numbers.

Moreover, statistical convergence is closely related to the concept of conver-

gence in probability. The notion depends on the density of subsets of the set

N of natural numbers.

A subset E of N is said to have the natural density δ(E) if the following

limit exists:

δ(E) = lim
n→∞

1

n

n
∑

k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset

of N has zero natural density and δ(Ec) = 1− δ(E).

In this section we introduce ∆n
(m)(λ, uq, ‖., ..., .‖)-statistical convergent se-

quences and give some relations between ∆n
(m)(λ, uq, ‖., ..., .‖)-statistical con-

vergent sequences and w(M, λ,∆n
(m), Q, u, p, ‖., ..., .‖)-summable sequences. A

sequence x = (xk) is said to be ∆n
(m)(λ, uq, ‖., ..., .‖)-statistically convergent to

L, if for every ǫ > 0, δ > 0 and z1, · · · , zn−1 ∈ X,

lim
n

1

λn

∣

∣

∣

{

k ∈ In : ank

(

qk

∥

∥

∥
uk∆

n
(m)xk − L, z1, · · · , zn−1

∥

∥

∥

)

≥ ǫ
}∣

∣

∣
= 0.

In this case we write xn → L
(

Sλ

(

∆n
(m), uq, ‖., ..., .‖

)

)

. The set of all ∆n
(m)(λ, uq,

‖., ..., .‖)-statistically convergent sequences is denoted by Sλ

(

∆n
(m), uq, ‖., ..., .‖

)

.

Theorem 3.1. Let M = (Mk) be a sequence of Orlicz functions and 0 <

inf
k
pk = h ≤ pk ≤ sup

k

pk = H < ∞. Then w(M, λ,∆n
(m), Q, u, p, ‖., ..., .‖) ⊂

Sλ

(

∆n
(m), uq, ‖., ..., .‖

)

.

Proof. Suppose x = (xk) ∈ wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖). Take ǫ > 0 and

ǫ1 =
ǫ
ρ
. Then for each z1, · · · , zn−1 ∈ X, we obtain

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

=
1

λn

∑

k∈In&
∥

∥

uk∆n
(m)

xk−L

ρ
,z1,··· ,zn−1

∥

∥≥ǫ

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

+
1

λn

∑

k∈In&
∥

∥

uk∆n
(m)

xk−L

ρ
,z1,··· ,zn−1

∥

∥<ǫ

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
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≥
1

λn

∑

k∈In&
∥

∥

uk∆n
(m)

xk−L

ρ
,z1,··· ,zn−1

∥

∥≥ǫ

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≥
1

λn

∑

k∈In

[Mk(ǫ1)]
pk ≥

1

λn

∑

k∈In

min([Mk(ǫ1)]
h, [Mk(ǫ1)]

H)

≥
1

λn

∣

∣

∣

{

k ∈ In : ank

(

qk

∥

∥

∥
uk∆

n
(m)xk − L, z1, · · · , zn−1

∥

∥

∥

)

≥ ǫ
}∣

∣

∣
min([Mk(ǫ1)]

h, [Mk(ǫ1)]
H).

Hence, x ∈ Sλ

(

∆n
(m), uq, ‖., ..., .‖

)

Theorem 3.2. Let M = (Mk) be a bounded sequence of Orlicz functions

and 0 < inf
k
pk = h ≤ pk ≤ sup

k

pk = H < ∞. Then Sλ

(

∆n
(m), uq, ‖., ..., .‖

)

⊂

w(M, λ,∆n
(m), Q, u, p, ‖., ..., .‖).

Proof. Suppose that M = (Mk) is bounded. Then there exists an integer K

such that Mk(t) < K, for all t ≥ 0. Take ǫ > 0 and ǫ1 =
ǫ
ρ
. Then

1

λn

∑

k∈In

ankMk

[

qk

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, ..., zn−1

∥

∥

∥

)]pk

=
1

λn

∑

k∈In&
∥

∥

uk∆n
(m)

xk−L

ρ
,z1,··· ,zn−1

∥

∥≥ǫ

ankMk

[

q

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

+
1

λn

∑

k∈In&
∥

∥

uk∆n
(m)

xk−L

ρ
,z1,··· ,zn−1

∥

∥<ǫ

ankMk

[

q

(

∥

∥

∥

uk∆
n
(m)xk − L

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤
1

λn

∑

k∈In&
∥

∥

uk∆n
(m)

xk−L

ρ
,z1,··· ,zn−1

∥

∥≥ǫ

max
{(K

ρ

)h

,
(K

ρ

)H}

+
1

λn

∑

k∈In

[Mk(ǫ1)]
pk

≤max(T h, TH)
1

λn

∣

∣

∣

{

k ∈ In : ank

(∥

∥

∥
uk∆

n
(m)xk − L, z1, · · · , zn−1

∥

∥

∥

)

≥ ǫ
}∣

∣

∣

+max([Mk(ǫ1)]
h, [Mk(ǫ1)]

H), where T =
K

ρ
.

Hence, x ∈ wλ(M, A,∆n
(m), Q, u, p, ‖., ..., .‖).
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