AN ERROR ESTIMATION IN BACKUS-GILBER MOVING LEAST-SQUARES APPROXIMATION

SVETOSLAV NENOV
Department of Mathematics
University of Chemical Technology and Metallurgy
Sofia 1756, BULGARIA

ABSTRACT: Our goal is to establish a bound of the error in moving least-squares approximation in terms of coefficients of the approximation and error of nearest data points.

AMS Subject Classification: 93E24
Key Words: moving least-squares approximation, error estimation, Backus-Gilber approach, singular values, largest singular value

Received: May 11, 2017; Accepted: September 16, 2017; Published: September 17, 2018; doi: 10.12732/caa.v22i1.3

1. STATEMENT

Let us remind the definition of moving least-squares approximation and a basic result.

Let:

1. \mathcal{D} be a compact in \mathbb{R}^d.

2. $x_i \in \mathcal{D}$, $i = 1, \ldots, m$; $x_i \neq x_j$, if $i \neq j$.

3. $f : \mathcal{D} \to \mathbb{R}$ be a continuous function.

4. $p_i : \mathcal{D} \to \mathbb{R}$ be continuous functions, $i = 1, \ldots, l$. The functions $\{p_1, \ldots, p_l\}$ are linearly independent in \mathcal{D} and let \mathcal{P}_i be their linear span.
5. $W: [0, \infty) \to (0, \infty)$ be a continuous and positive function.

Usually the basis in P_l is constructed by monomials. For example: $p_l(x) = x_1^{k_1} \cdots x_d^{k_d}$, where $x = (x_1, \ldots, x_d)$, $k_1, \ldots, k_d \in \mathbb{N}$, $k_1 + \cdots + k_d \leq l - 1$. In this case, we will use the notation x^k, $|k| \leq l - 1$. In the case $d = 1$, the standard basis is $\{1, x, \ldots, x^{l-1}\}$.

Following [3], we will use the following definition. The moving least-squares approximation of order l at a fixed point x is the value of $p^*(x)$, where $p^* \in P_l$ is minimizing the least-squares error

$$\sum_{i=1}^{m} W(\|x - x_i\|) (p(x) - f(x_i))^2$$

among all $p \in P_l$.

The approximation is “local” if weight function W is fast decreasing as its argument tends to infinity and interpolation is achieved if $W(0) = \infty$. We define additional function $w: [0, \infty) \to [0, \infty)$, such taht:

$$w(r) = \begin{cases}
\frac{1}{W(r)}, & \text{if } r > 0, \\
\frac{1}{W(r)} - 1, & \text{if } r = 0 \text{ and } W(0) < \infty, \\
0, & \text{if } r = 0 \text{ and } W(0) = \infty.
\end{cases}$$

Some examples of $W(r)$ and $w(r)$, $r \geq 0$:

$$W(r) = e^{-\alpha^2 r^2} \quad \text{exp-weight},$$
$$W(r) = r^{-\alpha^2} \quad \text{Shepard weights},$$
$$W(r) = r^2 e^{-\alpha^2 r^2} \quad \text{McLain weight},$$
$$w(r) = e^{\alpha^2 r^2} - 1 \quad \text{see Levin’s works}.$$

Below: $\| \cdot \| = \| \cdot \|_2$ is the 2-norm, $\| \cdot \|_1$ is 1-norm in \mathbb{R}^d; the superscript t denotes transpose of real matrix; I is the identity matrix. Let

$$E = \begin{pmatrix}
 p_1(x_1) & p_2(x_1) & \cdots & p_l(x_1) \\
 p_1(x_2) & p_2(x_2) & \cdots & p_l(x_2) \\
 \vdots & \vdots & \ddots & \vdots \\
 p_1(x_m) & p_2(x_m) & \cdots & p_l(x_m)
\end{pmatrix}.$$
Through the article, we assume the following conditions (H1):

(H1.1) $1 \in \mathcal{P}_l$.

(H1.2) $1 \leq l \leq m$.

(H1.3) $\text{rank}(E) = l$.

(H1.4) w is a smooth function.

(H1.5) The basis in \mathcal{P}_l is

$$
\left\{ x^k : |k| \leq l - 1 \right\} = \left\{ x_1^{k_1} \ldots x_d^{k_d} : k_1 + \cdots + k_d \leq l - 1 \right\}.
$$

The equivalent statement of the moving least-squares minimization problem is the following constrained problem:

Minimum of quadratic form $Q = \sum_{i=1}^{m} w(x, x_i) a_i^2$, \hspace{1cm} (1.1)

subject to $\sum_{i=1}^{m} a_i p_j(x_i) = p_j(x), \ j = 1, \ldots, l$. \hspace{1cm} (1.2)

Theorem 1.1 (see [3]). Let the conditions (H1.1)-(H1.4) hold true.

Then:

1. The matrix $E^t D^{-1} E$ is non-singular.

2. The approximation defined by the moving least-squares method is

$$
\hat{L}(f) = \langle a, F \rangle = \sum_{i=1}^{m} a_i f(x_i), \hspace{1cm} (1.3)
$$
where
\[a = A_0 c \quad \text{and} \quad A_0 = D^{-1} E (E^t D^{-1} E)^{-1}. \] (1.4)

3. If \(w(0) = 0 \), then the approximation is interpolatory.

Remark 1.1. Let us mark: \(D, c, a \) depend on \(x \); the matrix \(E \) and the vector \(F \) do not depend \(x \).

2. APPROXIMATION ORDER

Let the hypothesis (H1) be valid, \(x \) be a fixed point, \(x \neq x_i, i = 1, \ldots, m \), and let an integer \(k_0 \) (not unique in general case) be choosen such that
\[h = \|x - x_{k_0}\| = \min \{\|x - x_i\| : i = 1, \ldots, m\}. \]

Remark 2.1. Let us mark the following reproduction property: for all \(p \in \mathcal{P}_l \), we have
\[\sum_{i=1}^{m} p(x_i)a_i = p(x). \]

or if we set \(P = \begin{pmatrix} p(x_1) & p(x_2) & \cdots & p(x_m) \end{pmatrix}^t \) then
\[p(x) = \langle a, P \rangle. \]

Indeed, let \(p \in \mathcal{P}_l \). Then there exist constants \(b_1, \ldots, b_l \) such that
\[p(x) = \sum_{k=1}^{l} b_k p_k(x) \]

and using (1.2), we receive
\[p(x) = \sum_{k=1}^{l} b_k \sum_{i=1}^{m} a_i p(x_i) = \sum_{i=1}^{m} a_i \sum_{k=1}^{l} b_k p_k(x_i) \]
\[= \sum_{i=1}^{m} a_i p(x_i) = \langle a, P \rangle. \]
Let \(p \in \mathcal{P}_l \). Combining the previous remark and Cauchy-Schwarz inequality, we obtain

\[
|f(x) - \hat{L}(f)(x)| = |f(x) - p(x) + p(x) - \langle a, F \rangle| \\
\leq |f(x) - p(x)| + |\langle a, P \rangle - \langle a, F \rangle| \\
= |f(x) - p(x)| + |\langle a, P - F \rangle| \\
\leq |f(x) - p(x)| + \|a\| \|P - F\|.
\]

Introducing the classical infinity norm (\(D \) is a compact subset in \(\mathbb{R}^d \)):

\[
\|f - p\|_\infty = \max \{|f(x) - p(x)| : x \in D\},
\]

we have:

\[
|f(x) - p(x)| \leq \|f - p\|_\infty,
\]

\[
\|P - F\|_2^2 = \sum_{i=1}^l (p(x_i) - f(x_i))^2 \\
\leq m \max \{|(p(x_i) - f(x_i))^2 : i = 1, \ldots, l\} \\
= m \left(\max \{|p(x_i) - f(x_i)| : i = 1, \ldots, l\} \right)^2 \\
= m \|f - p\|_\infty^2.
\]

Therefore, for any \(p \in \mathcal{P}_l \) we have

\[
|f(x) - \hat{L}(f)(x)| \leq (1 + \sqrt{m} \|a\|) \|f - p\|_\infty, \quad (2.1)
\]

or we have to analyze the following two terms:

1. The infinity norm of \(f - p \). In Subsection 2.1, we will construct an upper bound of \(\|f - p\|_\infty \), following [1].

2. The norm of Lebesgue function \(\|a\|_1 \). In Subsection 2.2 we will construct an upper estimate for the Lebesgue function \(\|a\|_1 \) or for the equivalent norm \(\|a\|_2 \) in the case of Backus-Gilber approach.

2.1. The Norm \(\|f - p\|_\infty \)

Let \(f \) be \((N + 1)\)-times continuously differentiable function in \(D \) and let all derivatives of \(f \) be bounded functions in \(D \).
The inequality (2.1) is valid for any polynomial \(p \in \mathcal{P}_l \). Then it is valid for the Taylor’s polynomial for \(f \) at \(x \) of degree \(N \) on the one dimensional segment with endpoints \(x \) and \(x_1 \). Hence there exists a constant \(C_{k_0} > 0 \) such that

\[
\|f - p\|_\infty \leq C_{k_0} \|x - x_{k_0}\|^{N+1}.
\]

Then

\[
|f(x) - \hat{L}(f)(x)| \leq (1 + \sqrt{m} \|\alpha\|) C_{k_0} h^{N+1}.
\] (2.2)

Obviously, we may use

\[
C_{k_0} = \frac{1}{(N+1)!} \max \left\{ \left| f^{(N+1)}_\alpha (\alpha x + (1 - \alpha)x_{k_0}) \right| : \alpha \in [0, 1] \right\},
\]

but in this case \(C_{k_0} \) depends on \(x \). To avoid this, let \(C_{k_0} = \max \{ C_{k_0}(x) : x \in \mathcal{D} \} \).

2.2. BACKUS-GILBER APPROACH

The Backus-Gilber approach of moving-least squares method is exactly the constrained problem (1.1), (1.2) with \(l = 1 \) and \(p_1(x) = 1 \), see [3, Section 2].

In this case, we have the following result.

Theorem 2.1. Let the conditions (H1) hold. Let \(f \) be \((N+1)\)-times continuously differentiable function in \(\mathcal{D} \) and let all derivatives of \(f \) be bounded functions in \(\mathcal{D} \).

Then for any \(x \in \mathcal{D} \) the following inequality holds

\[
|f(x) - \hat{L}(f)(x)| \leq (1 + \|c\|) C_{k_0} h^{N+1}.
\] (2.3)

Proof. Let

\[
A = D^{-1}E \left(E^tD^{-1}E \right)^{-1} E^t = A_0E^t.
\]

Then (using [2, P15-SVD], let us remind that \(l \leq m \))

\[
\sigma_{\max}(A_0) \sigma_{\min}(E^t) \leq \sigma_{\max}(A_0E^t) = \sigma_{\max}(A).
\]

But (see [4])

\[
\sigma_{\max}(A) \leq \sqrt{m}.
\]
On the other hand, it is not hard to calculate the singular value decomposition of the vector E:

$$E = UV^t,$$

where:

$$U = \left(e \ 	ilde{U} \right), \quad e = \frac{E}{\|E\|_2} = \frac{1}{\sqrt{m}}E;$$

\tilde{U} is the $(m \times (m - 1))$-matrix with orthonormal columns and such that $\tilde{U}^t E = 0$;

$$\Sigma = \left(\|E\|_2 \ 0 \ \cdots \ 0 \right)^t = \left(\sqrt{m} \ 0 \ \cdots \ 0 \right)^t, \quad V = (1).$$

Hence $\sigma_{\min}(E^t) = \sigma_{\min}(E) = \sqrt{m}$ and

$$\|A_0\| = \sigma_{\max}(A_0) \leq \frac{\sqrt{m}}{\sigma_{\min}(E^t)} = 1.$$

Therefore

$$\|a\| = \|A_0c\| \leq \|A_0\| \|c\| = \|c\|.$$

The inequality (2.3) follows from (2.2). \hfill \Box

REFERENCES

