Bibliography

Export 31 results:
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
CAMMAROTO F., CHINNÍ A., DI BELLA B..  2007.  MULTIPLE SOLUTIONS FOR A DIRICHLET PROBLEM INVOLVING THE P-LAPLACIAN. Dynamic Systems and Applications. 16:7.
CASAL ALFONSOC, J. DIAZ ILDEFONSO, VEGAS JOSEM.  2009.  BLOW-UP IN SOME ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH TIME-DELAY. Dynamic Systems and Applications. 18:18.
CASTILLO SAMUEL, PINTO MANUEL.  2010.  ASYMPTOTIC BEHAVIOR OF FUNCTIONAL DYNAMIC EQUATIONS IN TIME SCALE. Dynamic Systems and Applications. 19:13.
CECCHI MARIELLA, DOSLA ZUZANA, MARINI MAURO.  2008.  MONOTONE SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS. Dynamic Systems and Applications. 17:14.
CERDIK TUGBASENLIK, HAMAL NUKETAYKUT, DEREN FULYAYORUK.  2015.  EXISTENCE OF SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH m-POINT INTEGRAL BOUNDARY CONDITIONS. Dynamic Systems and Applications. 24:11.
CERNEA AURELIAN.  2018.  SOME REMARKS ON THE SOLUTIONS OF A SECOND-ORDER EVOLUTION INCLUSION. Dynamic Systems and Applications. 27(2):12.
CHADHA ALKA, BORA S.N., SAKTHIVEL R..  2018.  APPROXIMATE CONTROLLABILITY OF IMPULSIVE STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS. Dynamic Systems and Applications. 27(1):30.
CHAN C.Y, TRAGOONSIRISAK P..  2009.  EFFECTS OF A CONCENTRATED NONLINEAR SOURCE ON QUENCHING IN R N. Dynamic Systems and Applications. 18:7.
CHAN C.Y, TREEYAPRASERT T..  2015.  EXISTENCE, UNIQUENESS AND QUENCHING FOR A PARABOLIC PROBLEM WITH A MOVING NONLINEAR SOURCE ON A SEMI-INFINITE INTERVAL. Dynamic Systems and Applications. 24:8.
CHAN C.Y.  2009.  QUENCHING CRITERIA FOR A DEGENERATE PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE. Dynamic Systems and Applications. 18:7.
CHAN C.Y., LIU H.T..  2007.  EXISTENCE, UNIQUENESS AND QUENCHING OF THE SOLUTION FOR A NONLOCAL DEGENERATE SEMILINEAR PARABOLIC PROBLEM. Dynamic Systems and Applications. 16:9.
CHAN C.Y, LIU H.T.  2009.  QUENCHING FOR DEGENERATE PARABOLIC PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS. Dynamic Systems and Applications. 18:12.
CHAN W.Y.  2009.  EXISTENCE OF THE CLASSICAL SOLUTION FOR DEGENERATE QUASILINEAR PARABOLIC PROBLEMS WITH SLOW DIFFUSIONS. Dynamic Systems and Applications. 18:17.
CHAN C.Y, TRAGOONSIRISAK P..  2011.  A QUENCHING PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE IN AN INFINITE STRIP. Dynamic Systems and Applications. 20:13.
CHAN C.Y, TREEYAPRASERT T..  2009.  QUENCHING FOR A PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE ON A SEMI-INFINITE INTERVAL. Dynamic Systems and Applications. 18:8.
CHANG SHIH-SEN, CHO YEOL-JE, KIM JONG-KYU.  2008.  APPROXIMATION METHODS OF SOLUTIONS FOR EQUILIBRIUM PROBLEM IN HILBERT SPACES. Dynamic Systems and Applications. 17:11.
CHANG JUNG-CHAN, LANG CHENG-LIEN.  2007.  GLOBAL EXISTENCE FOR RETARDED VOLTERRA INTEGRODIFFERENTIAL EQUATIONS WITH HILLE-YOSIDA OPERATORS. Dynamic Systems and Applications. 16:17.
CHATZARAKIS GEORGEE, JADLOVSKA IRENA.  2019.  EXPLICIT CRITERIA FOR THE OSCILLATION OF DIFFERENTIAL EQUATIONS WITH SEVERAL ARGUMENTS. Dynamic Systems and Applications. 28(2):26.
CHATZARAKIS G.E., DEEPA M., NAGAJOTHI N., SADHASIVAM V..  2018.  ON THE OSCILLATION OF THREE DIMENSIONAL alpha-FRACTIONAL DIFFERENTIAL SYSTEMS. Dynamic Systems and Applications. 27(4):22.
CHATZARAKIS GEORGEE, JADLOVSKA IRENA.  2018.  DIFFERENCE EQUATIONS WITH SEVERAL NON-MONOTONE DEVIATING ARGUMENTS: ITERATIVE OSCILLATION TESTS. Dynamic Systems and Applications. 27(2):28.