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ABSTRACT: Practical stability properties of Caputo fractional delay differential

equations is studied and, in particular, the case with state dependent delays is con-

sidered. These type of delays is a generalization of several types of delays such as

constant delays, time variable delays, or distributed delays. In connection with the

presence of a delay in a fractional differential equation and the application of the

fractional generalization of the Razumikhin method, we give a brief overview of the

most popular fractional order derivatives of Lyapunov functions among Caputo frac-

tional delay differential equations. Three types of derivatives for Lyapunov functions,

the Caputo fractional derivative, the Dini fractional derivative, and the Caputo frac-

tional Dini derivative, are applied to obtain several sufficient conditions for practical

stability. An appropriate Razumikhin condition is applied. These derivatives allow

the application of non-quadratic Lyapunov function for studying stability properties.

We illustrate our theory on several nonlinear Caputo fractional differential equations

with different types of delays.

Key Words: functional-differential equations with fractional derivatives, stability,

Lyapunov functions, state dependent delay
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1. INTRODUCTION

Fractional differential equations have been studied extensively in the literature be-

cause of their applications in various fields of engineering and science (see, for example,

the monographs [4, 13], and the cited therein references). Also, various types of delays

arise in differential equations due to more adequate modeling of real world problems.

State-dependent delays in differential equations with ordinary derivative are applied

in modeling milling [10] and in control theory [18].

In the qualitative study for nonlinear systems stability properties are important.

For example, several stability results for fractional order systems with delay were ob-

tained in [5]. An appropriate method for this study is the Lyapunov second method

and its modification of the Razumikhin method (see, for example, [6] for stability of

fractional delay differential equations, and [9], for Lyapunov-Razumikhin techniques

for state-dependent delay differential equations). LaSalle and Lefschetz [12] intro-

duced the so called practical stability which do not provide stability of the equilibrium

point but it is connected with its boundedness. This type of stability is studied for

various types of differential equations (for the Caputo fractional differential equations

see [2]).

The main goal of this paper is the study practical stability properties of Caputo

fractional delay differential equations. We study the general case of state dependent

delays which includes for example the cases of time dependent variable delay, with a

constant delay, and without delay. To the best of our knowledge, this is the first paper

studying practical stability properties of Caputo fractional differential equation with

state dependent delay. The investigation is based on the fractional modification of the

Razumikhin method. It is worth pointing out that the Lyapunov functional method

cannot be easily generalized to fractional order systems. Taking these factors into

consideration, we present a brief overview of the literature, with various definitions

of fractional order derivatives of Lyapunov functions among Caputo fractional delay

differential equations. Three types of fractional derivatives of Lyapunov functions are

applied: Caputo fractional derivative, Dini fractional derivative, and Caputo frac-

tional Dini derivative. Although the most popular of them is the Caputo fractional

derivative, it leads to some restrictions in applications, such as applying differentiable

Lyapunov function and a Razumikhin condition over the whole past time interval.



CAPUTO FRACTIONAL DIFFERENTIAL EQUATION 717

When the other two types of derivatives of Lyapunov functions, the Dini and Caputo

fractional Dini derivatives, are applied, then in the sufficient conditions we obtain,

we use less restrictive conditions (similar to the Razumikhin condition and continu-

ous Lyapunov functions without the restriction of differentiability). Several examples

with various types of delays are provided to illustrate the application of the sufficient

conditions we obtain.

2. NOTES ON FRACTIONAL CALCULUS

Fractional calculus generalizes the derivative and the integral of a function to a non-

integer order [14]. In many applications in science and engineering, the fractional

order q is often less than 1, so we restrict q ∈ (0, 1) everywhere in the paper. There

are several definitions of fractional derivatives and fractional integrals, and three of

them are presented next ([14]):

1. The Riemann–Liouville (RL) fractional derivative of order q of function m is

given by

RL
t0
Dqm(t) =

1

Γ (1− q)

d

dt

t∫

t0

(t− s)
−q
m(s)ds, t ≥ t0

where Γ(.) denotes the Gamma function.

2. The Caputo fractional derivative of order q is defined by

c
t0
Dqm(t) =

1

Γ (1− q)

t∫

t0

(t− s)−qm′(s)ds, t ≥ t0.

The Caputo and Riemann-Liouville formulations coincide when the initial condi-

tions are zero. Note that the RL derivative is meaningful under weaker smooth-

ness requirements.

3. The Grünwald-Letnikov fractional derivative is given by

t0D̃
q
tm(t) = lim

h→0

1

hq

[
t−t0

h
]∑

r=0

(−1)
r

(
q

r

)
m (t− rh) , t ≥ t0

and the Grünwald-Letnikov fractional Dini derivative by

t0D̃
q
+m(t) = lim sup

h→0+

1

hq

[
t−t0

h
]∑

r=0

(−1)r
(
q

r

)
m(t− rh), t ≥ t0, (1)

where
(
q
r

)
= q(q−1)...(q−r+1)

r! and [ t−t0
h

] denotes the integer part of the fraction
t−t0
h

.
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From the relation between the Caputo fractional derivative and the Grünwald-

Letnikov fractional derivative, using (1), we define the Caputo fractional Dini deriva-

tive as
c
t0
D
q
+m(t) = t0D̃

q
+[m(t)−m(t0)],

i.e.

c
t0
D
q
+m(t) = lim sup

h→0+

1

hq

[
m(t)−m(t0)−

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)(
m(t− rh)−m(t0)

)]
. (2)

3. STATEMENT OF THE PROBLEM

Let R+ = [0,∞) and r > 0 be a given number. Consider the space C0 of all functions

y : [−r, 0] → R
n
which are continuous endowed with the norm

‖y‖0 = sup
t∈[−r,0]

{‖y(t)‖ : y ∈ C0},

where ‖ · ‖ is a norm in R
n
.

Consider the initial value problem (IVP) for a nonlinear system of fractional dif-

ferential equations with finite state dependent delay (FrDDE) with q ∈ (0, 1):

C
t0
D
q
tx(t) = f(t, x(t), xρ(t,xt)), for t > t0,

x(t+ t0) = φ(t), for t ∈ [−r, 0],
(3)

where x ∈ R
n
, t0 ≥ 0 is the initial time, and C

t0
D
q
t y(t) denotes the Caputo fractional

derivative for the state x. Also, f : [t0,∞)×R
n ×R

n → R
n
, ρ : [t0,∞)×C0 → R+,

and φ ∈ C0, are three given functions, where r > 0. Here, xt(s) = x(t+ s), s ∈ [−r, 0]
represents the history of the state from time t−r up to the present time t. Note that,

for any t ≥ 0, we let xρ(t,xt) = x(ρ(t, x(t + s))), s ∈ [−r, 0].
We introduce the following assumptions:

A1 The function f belong to C([t0,∞)× C0 × C0,R
n
).

A2 There exists a set Ω ⊂ C0 such that the function ρ ∈ C([t0,∞) × C0,R) and

t− r ≤ ρ(t, u) ≤ t, for u ∈ Ω.

A3 The function f(t, 0) = 0 for t ≥ t0.

Remark 1. Condition (A2) guarantees the delay in the argument of the unknown

function in (3), i.e., the function ρ determines the state-dependent delay. Also, this

condition guarantees the boundedness of the delay in (3).
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Remark 2. The delay in (3) is in a very general form and it includes the time de-

pendent variable delay (with ρ(t, u) ≡ t−τ(t), for t ≥ 0, u ∈ C0, and τ ∈ C(R+, R+)),

the constant delay (with ρ(t, u) = t− C, for t ≥ 0, u ∈ C0, and C = const > 0), and

without delay (with ρ(t, u) ≡ t, for t ≥ 0, and u ∈ C0).

Remark 3. Note that condition (A3) guarantees the existence of the zero solution

of IVP for FrDDE (3) with the zero initial function ϕ ≡ 0.

Remark 4. The function ρ(t, u) = t − sin2(u) satisfies the condition (A2) with

r = 1, i.e. t− 1 ≤ t− sin2(u) ≤ t

Remark 5. Let x be a solution of (3). Then, xt ∈ C0 for any fixed t ≥ 0. Define

the function ψ(s) = x(t + s), s ∈ [−r, 0]. Then, ψ0 = xt ∈ C0 and

xρ(t,xt) = x(ρ(t, x(t+s))) = x(t+(ρ(t, x(t+s))−t)) = ψ((ρ(t, ψ(s))−t)) = ψ(ρ(t,ψ0)−t).

If the condition (A2) is satisfied, then ψ ∈ C0 and ρ(t, ψ0)− t ∈ [−r, 0].

Now we will define practical stability for the nonlinear Caputo FrDDE following

the ideas for practical stability for ordinary differential equations ([12]).

Definition 1. The zero solution of FrDDE (3) with zero initial function is called

(S1) practically stable w.r.t. (λ,A), if there exits an initial time t0 ≥ 0 such that, for

any initial function φ ∈ C0 : ‖φ‖0 < λ, the inequality ‖x(t; t0, φ)‖ < A, for t ≥
t0, holds, where the real numbers (λ,A) with 0 < λ < A are given;

(S2) uniformly practically stable w.r.t. (λ,A), if (S1) is satisfied for all t0 ≥ 0;

(S3) practically quasi stable with respect to (λ,B, T ) if there exists t ≥ t0 such that,

for any φ ∈ C0, the inequality ‖φ‖0 < λ implies ‖x(t; t0, φ)‖ < B, for t ≥ t0+T ,

where the positive constants λ,B, T with 0 < λ < B are given;

(S4) uniformly practically quasi stable with respect to (λ,B, T ) if (S3) holds for all

t0 ≥ 0.

Here, x(t; t0, φ) is a solution of (3).

Remark 6. We note that in (S2) and (S4) of Definition 1, the change of the initial

time t0 leads to a change of the differential equation and not only on the initial

condition (different than the case of ordinary differential equations).

Remark 7. Note that, from stability properties of the zero solution of (3), we have

the practical stability but the opposite is not true.
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Remark 8. Similar to Definition 1, various types of practical stability of a fixed

nonzero solution could be defined. For convenience, we state all definitions and the-

orems for the case when the equilibrium point is the origin of R
n
because any equi-

librium point can be shifted to the origin via an appropriate change of variables.

Define the following sets:

K = {a ∈ C(R+,R+) : a is strictly increasing and a(0) = 0};
SA = {x ∈ R

n
: ‖x‖ ≤ A}, A > 0.

We will use comparison results for the scalar fractional differential equation without

any delay
c
t0
Dqu(t) = g (t, u) , for t > t0, s.t. u(t0) = v0, (4)

where u, v0 ∈ R and g : [t0,∞)×R → R.

We denote the solution of the IVP for the scalar FrDE (4) by u(t; t0, v0). In the

case of non-uniqueness of the solution we will assume the existence of a maximal one.

We introduce the assumption:

A4 The function g ∈ C([t0,∞) ×R,R), g(t, 0) ≡ 0, and for any v0 ∈ R, the IVP

for the scalar FrDE (4) has a solution u(t; t0, v0).

Remark 9. Practical stability properties of the scalar IVP (4) is defined similar to

Definition 1.

Remark 10. We will study the practical stability of (3) or (4) in the case when

the right side part depends on the unknown function. In the case f(t, x) ≡ F (t) or

g(t, x) ≡ G(t), then the equation has no zero solution. The nonzero solution could be

bounded by a bound depending on the initial condition.

Example 1. Consider the IVP for the scalar FrDE

C
0 D

0.4u(t) =
−t1.6
Γ(2.6)

1F2

(
{1}, {1.3, 1.8},− t

2

4

)
, for t > 0,

u(0) = u0,

(5)

where 1F2(1, {1.3, 1.8},− t2

4 ) is the regularized generalized hypergeometric function.

The IVP (5) has a solution ([15])

u(t) = u0 + cos(t)− 1, t ≥ 0.

For any (λ,A), with A = 2 + λ, and for any initial value |u0| < λ, the corresponding

solution satisfies |u(t)| < A, t ≥ 0. This is similar to (S1) in Definition 1 but we are

not able to say that the zero solution is practically stable because there is no zero

solution. The solution is bounded by a constant 2 + |u0|.
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4. LYAPUNOV FUNCTIONS AND THEIR FRACTIONAL

DERIVATIVES

We study the connection between the practical stability properties of the zero solution

of the system of FrDDE (3) and the practical stability of the zero solution of the

scalar FrDE (4) by applying an appropriate modification of Razumikhin method and

Lyapunov functions. In connection with the application of fractional derivatives, we

need an appropriate definitions of the derivative of Lyapunov functions among the

studied fractional equations. We introduce the class Λ of Lyapunov-like functions

which will be used to investigate the practical stability of the system FrDDE (3).

Definition 2. Let I ⊂ R+ and D ⊂ R
n. We say that the function V : I ×D → R+

belongs to the class Λ(I,D) if V is continuous and locally Lipschitzian with respect

to its second argument in I ×D.

In connection with the Caputo fractional derivative, it is necessary to define in an

appropriate way the derivative of the Lyapunov functions among the studied equa-

tion. We will give a brief overview of the three main types derivatives of Lyapunov

functions V ∈ Λ([t0 − r, T ),D) among solutions of fractional differential equations in

the literature:

- Caputo fractional derivative - Let x(t) ∈ D, t ∈ [t0 − r, T ), be a solution of the

IVP for the FrDDE (3) and V ∈ Λ([t0 − r, T ),D). We define

c
t0
DqV (t, x(t)) =

1

Γ (1− q)

t∫

t0

(t− s)
−q d

ds

(
V (s, x(s))

)
ds, t ∈ (t0, T ). (6)

This type of derivative is applicable for continuously differentiable Lyapunov

functions.

- Dini fractional derivative - Let ψ ∈ C([−τ, 0],D) and V ∈ Λ([t0 − r, T ),D),

t0 ≥ 0 is a given initial point. Then, for any t ∈ (t0, T ), we define the Dini

fractional derivative of V by

t0D
q

(3)V (t, ψ(0), ψ) = lim sup
h→0

1

hq

[
V (t, ψ(0))−

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
V (t− rh, ψ(0)

− hqf(t, ψ(0), ψ(ρ(t,ψ0)−t)))
]
,

(7)

where ψ0(s) = ψ(s) and ψ(ρ(t,ψ0)−t) = ψ(ρ(t, ψ(s)) − t), for s ∈ [−r, 0].
Note that, if condition (A2) is satisfied, then ρ(t, ψ(s))−t ∈ [−r, 0] and ψρ(t,ψ(s))−t
is well defined.
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- Caputo fractional Dini derivative - Let the initial data (t0, φ) ∈ R+×C([−τ, 0],D))

and ψ ∈ C([−τ, 0],D) be given. Then, for the Lyapunov function V ∈ Λ([t0 −
r, T ),D), we define the Caputo fractional Dini derivative by

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0))

= lim sup
h→0+

1

hq

{
V (t, ψ(0))− V (t0, φ(0))

−
[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)(
V (t− rh, ψ(0)− hqf(t, ψ(0), ψρ(t,ψ0)−t))− V (t0, φ(0))

)}
,

(8)

for t ∈ (t0, T ), or its equivalent form,

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0))

= lim sup
h→0+

1

hq

{
V (t, ψ(0)) +

[
t−t0

h
]∑

r=1

(−1)r
(
q

r

)
V (t− rh, ψ(0)− hqf(t, ψ(0), ψρ(t,ψ0)−t)

}

− V (t0, φ(0))

(t− t0)qΓ(1− q)
,

(9)

for t ∈ (t0, T ).

Remark 11. For any initial data (t0, φ) ∈ R+×C([−τ, 0],D) of the IVP for FrDDE

(3) and ψ ∈ C([−τ, 0],D), the relation between the Dini fractional derivative defined

by (7) and the Caputo fractional Dini derivative defined by (9) is given by

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0)) = t0D
q

(3)V (t, ψ(0), ψ)− V (t0, φ(0))

(t− t0)qΓ(1− q)
,

or by

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0)) = t0D
q

(3)V (t, ψ(0), ψ)− RL
t0
Dq

(
V (t0, φ(0))

)
.

Remark 12. In the particular case of time variable delays ρ(t, xt) ≡ τ(t) ≤ t, some

authors use the following definition for the derivative of the Lyapunov function among

the fractional delay differential equations (see, for example, [16])

D+V (t, ψ(0)) = lim sup
h→0

1

hq

[
V (t, ψ(0))− V (t− h, ψ(0)− hqf(t, ψ0))

]
, (10)

with ψ0(s) = ψ(s).

This operator does not depend on the order q of the fractional derivative nor on

the initial time t0, which is typical for the Caputo fractional derivative. Also, it has

no memory and if x is a solution of (3), then D+V (t, x(t)) 6= c
t0
DqV (t, x(t)).
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We will give an example illustrating the above defined types of fractional deriva-

tives of Lyapunov functions. To simplify the calculations and to emphasize the deriva-

tives and their properties, we will consider the scalar case, i.e., n = 1.

Example 2. Let V (t, x) = m(t) x2, where m ∈ C1(R+,R+).

Case 1. Caputo fractional derivative. Let x(t) = x(t; t0, φ) be a solution of the

IVP for FrDDE (3). The fractional derivative

c
t0
DqV (t, x(t)) =

1

Γ(1− q)

∫ t

t0

m′(s)x2(s) + 2m(s)x(s)x′(s)

(t− s)q
ds

is difficult to obtain in the general case for any solution of (3). In the particular case

m(t) ≡ 1, there is an upper bound ([8])

c
t0
DqV (t, x(t)) = c

t0
Dq(x(t)))2 ≤ 2x(t)ct0D

qx(t) = 2x(t)f(t, x(t), xρ(t,xt)).

Case 2. Dini fractional derivative. Let ψ ∈ C([−τ, 0],D) be given. Applying (7),

we obtain

t0D
q

(3)V (t, ψ(0), ψ) = 2ψ(0) m(t)f(t, ψ(0), ψρ(t,ψ0)−t) + (ψ(0))2 RL
t0
Dqm(t). (11)

Case 3. Caputo fractional Dini derivative. Let the initial data (t0, φ) ∈ R+ ×
C([−τ, 0],D) and ψ ∈ C([−τ, 0],D) be given. Use (9) and we obtain

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0))

= 2ψ(0)m(t)f(t, ψ(0), ψρ(t,ψ0)−t) + (ψ(0))2 RL
t0
Dqm(t)− (φ(0))2m(t0)

(t− t0)qΓ(1 − q)
.
(12)

5. COMPARISON RESULTS FOR FRACTIONAL DIFFERENTIAL

EQUATIONS WITH STATE DEPENDENT DELAY

First we recall the following result for Caputo fractional Dini derivatives of continuous

functions.

Lemma 1. ([1]) Let m ∈ C([t0, t0 + θ],R), θ > 0, and suppose that there exist

t∗ ∈ (t0, t0 + θ] such that m(t∗) = 0, and m(t) < 0, for t0 ≤ t < t∗. Then, if the

Caputo fractional Dini derivative (2) exists t = t∗, then the inequality c
t0
D
q
+m(t∗) > 0

holds.

Now we will obtain some comparison results for the case of state dependent delays.

Lemma 2. (Comparison result by the Caputo fractional Dini derivative) Assume

the following conditions are satisfied:
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1. The function x∗(t) = x(t; t0, x0) ∈ D, D ⊂ R
n
, is a solution of IVP for FrDDE

(3) defined for t ∈ [t0, t0 + θ], θ > 0.

2. There exists a function G ∈ C([t0, t0 + θ] ×R,R) and a real H > 0 such that,

for any ǫ ∈ [0, H ] and v0 ∈ R, the scalar FrDE

c
t0
Dqu = G(t, u) + ǫ for t ∈ [t0, t0 + θ], with u(t0) = v0 (13)

has a solution u(t; t0, v0, ǫ) ∈ Cq([t0, t0 + θ],R).

3. The function V ∈ Λ([t0 − r, t0 + θ],D) and, for any point t ∈ [t0, t0 + θ] such

that

V (t, x∗(t)) = sup
s∈[t−r,t]

V (s, x∗(s)),

the inequality

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0)) ≤ G(t, V (t, x∗(t))) (14)

holds, where ψ(s) = x∗(t + s) for s ∈ [−r, 0] and ψ(ρ(t,ψ0)−t) = xρ(t,xt) in Eq.

(8) (see Remark 5).

Then,

sup
s∈[−r,0]

V (t0 − s, φ(s)) ≤ u0

implies

V (t, x∗(t)) ≤ u∗(t), for t ∈ [t0, t0 + θ],

where u∗(t) = u(t; t0, u0, 0) is the maximal solution of IVP for scalar FrDE (13) for

v0 = u0 and ε = 0.

Proof. Assume that the condition

sup
s∈[−r,0]

V (t0 − s, φ(s)) ≤ u0,

for a given u0, holds. Let ε ∈ (0, H ] be an arbitrary fixed number and consider

the initial value problem for the scalar FrDE (13) with v0 = u0 + ε. According to

Condition 2, the IVP for the scalar FrDE (13) has a solution uε(t) = u(t; t0, u0+ε, ε).

Then, it satisfies the Volterra fractional integral equation ([7, Lemma 6.2])

uε(t) = u0 + ε+
1

Γ(q)

∫ t

t0

(t− s)q−1
(
G(s, uε(s)) + ε

)
ds, for t ∈ [t0, t0 + θ]. (15)

Let the function m ∈ C([t0, t0 + θ],R+) be defined by m(t) = V (t, x∗(t)). We now

prove that

m(t) < uε(t), for t ∈ [t0, t0 + θ]. (16)
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Note that the inequality (16) holds for t = t0 since

m(t0) = V (t0, x
∗(t0)) = V (t0, φ(0)) ≤ sup

s∈[−r,0]

V (t0 − s, φ(s)) ≤ u0 < uε(t0).

Assume that the inequality (16) is not true for some t ∈ (t0, t0+θ]. Then, there exists

a point t∗ ∈ (t0, t0 + θ] such that m(t∗) = uε(t
∗) and m(t) < uε(t), for t ∈ [t0, t

∗).

Now, Lemma 1 (applied to m(t)− uε(t)) yields

c
t0
D
q
+(m(t∗)− uε(t

∗) > 0,

i.e.
c
t0
D
q
+m(t∗) > G(t∗, uε(t

∗)) + ε > G(t∗,m(t∗)). (17)

Then, from Eq. (2), we obtain for t ∈ (t0, t0 + θ] the equality

lim sup
h→0+

1

hq

[
x∗(t)− φ(0)− S(x∗(t), h)

]
= f(t, x∗(t), x∗ρ(t,x∗

t )
),

where

S (x∗(t), h) =

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
[x∗(t− rh)− φ(0)]. (18)

Therefore,

x∗(t)− φ(0)− S (x∗(t), h) = hqf(t, x∗(t), x∗ρ(t,x∗

t )
) + Ξ(hq),

or

x∗(t)− hqf(t, x∗(t), x∗ρ(t,x∗

t )
) = S (x∗(t), h) + φ(0) + Ξ(hq),

with ‖Ξ(hq)‖
hq → 0 as h→ 0.

Then, for any t ∈ (t0, t0 + θ], we obtain

m(t)−m(t0)−
[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)[
m(t− rh)−m(t0)

]

=

{
V (t, x∗(t))− V (t0, φ(0))

−
[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)[
V
(
t− rh, x∗(t)− hqf(t, x∗(t), x∗ρ(t,x∗

t )
)
)
− V (t0, φ(0))

]}

+

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
V
(
t− rh, S (x∗(t), h) + φ(0) + Ξ(hq)

)

−
[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
V
(
t− rh, x∗(t− rh)

)
.

(19)
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Since V is locally Lipschitzian in its second argument with a Lipschitz constant L > 0,

applying (18), we obtain

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

){
V
(
t− rh, S (x∗(t), h) + φ(0) + Ξ(hq)

)

− V
(
t− rh, x∗(t− rh)

)}

≤
[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
L‖S (x∗(t), h) + φ(0)− x∗(t− rh)‖ + L‖Ξ(hq)‖

[
t−t0

h
]∑

r=1

(−1)r
(
q

r

)

≤ L

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
‖
[
t−t0

h
]∑

j=1

(−1)j+1

(
q

j

)
[x∗(t− jh)− φ(0)] + φ(0)− x∗(t− rh)‖

+ L‖Ξ(hq)‖
[
t−t0

h
]∑

r=1

(−1)r
(
q

r

)

≤ L

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
‖x∗(t− rh) − φ(0)‖

+ L

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
‖
[
t−t0

h
]∑

j=1

(−1)j+1

(
q

j

)
[x∗(t− jh)− φ(0)]‖

+ L‖Ξ(hq)‖
[
t−t0

h
]∑

r=1

(−1)r
(
q

r

)
.

(20)

Note that

lim sup
h→0+

[
t−t0

h
]∑

r=1

(−1)
r

(
q

r

)
= −1. (21)

Substitute (20) in (19), divide both sides by hq, take the limit as h → 0+, use

(21), and we obtain that, for any t ∈ (t0, t0 + T ],
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c
t0
D
q
+m(t) ≤ c

t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0)) + L lim
h→0+

Ξ(hq)

hq
lim
h→0+

[
t−t0

h
]∑

r=1

(−1)r
(
q

r

)

+ L lim sup
h→0+

1

hq

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
‖x∗(t− rh)− φ(0)‖

+ L lim
h→0+

[
t−t0

h
]∑

r=1

(−1)r+1

(
q

r

)
lim sup
h→0+

1

hq

[
t−t0

h
]∑

j=1

(−1)j+1

(
q

j

)
‖x∗(t− jh)− φ(0)‖

= c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0)) ≤ G(t, V (t, x∗(t))) = G(t,m(t)),

(22)

where ψ0 = x∗t and ψ(ρ(t,ψ0)−t) = x∗
ρ(t,xt)

in Eq. (8) (see Remark 5). Now, (22) with

t = t∗ contradicts (17). Therefore, (16) holds on [t0, t0 + θ]. Since ε ∈ (0, H ] is an

arbitrary number, it follows that (16) holds on [t0, t0 + θ] and any ε ∈ (0, H ].

We now show that, if 0 < ε2 < ε1 ≤ H , then

uε2(t) < uε1(t) for t ∈ [t0, t0 + θ]. (23)

Note that the inequality (23) holds for t = t0. Assume that inequality (23) is not

true. Then, there exists a point t∗ ∈ (t0, t0 + θ] such that uε2(t
∗) = uε1(t

∗), and

uε2(t) < uε1(t), for t ∈ [t0, t
∗). Now, Lemma 1 (applied to uε2(t)− uε1(t)) yields

c
t0
D
q
+(uε2(t

∗)− uε1(t
∗)) > 0.

However,

c
t0
D
q
+(uε2(t

∗)− uε1(t
∗)) = G(t∗, uε2(t

∗)) + ε2 − [G(t∗, uε1(t
∗)) + ε1] = ε2 − ε1 < 0,

obtaining a contradiction. Thus, (23) is true.

Now, given 0 < ε ≤ H , (16) together with (23), guarantee that the family of

solutions {uε(t) : t ∈ [t0, t0+θ]} of (13) is uniformly bounded, i.e., there exists K > 0

with

|uε(t)| ≤ K, for (t, ε) ∈ [t0, t0 + θ]× [0, H ].

Let

M = sup{|G(t, x)| : (t, x) ∈ [t0, t0 + θ]× [−K,K]}.

Consider a decreasing sequence of positive numbers {εj}∞j=0, 0 < ε0 ≤ H , such that

limj→∞ εj = 0, and consider the sequence of solutions uεj (t). Now, for t1, t2 ∈
[t0, t0 + θ], with t1 < t2, using the inequalities

aq − bq ≤ 2(a− b)q, for a ≥ b ≥ 0,

(t1 − s)q ≤ (t2 − s)q, for s ∈ [t0, t1],
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and

∫ t1

t0

(
(t2−s)q−1− (t1−s)q−1

)
ds =

1

q

(
(t2− t0)q− (t1− t0)q− (t2− t1)q

)
≤ (t2 − t1)

q

q
,

we get

|uεj (t2)− uεj (t1)| ≤
1

Γ(q)

∣∣∣
∫ t1

t0

(
(t2 − s)q−1 − (t1 − s)q−1

)(
G(s, uεj (s)) + εj

)
ds
∣∣∣

+
∣∣∣
∫ t2

t1

((t2 − s)q−1)(G(s, uεj (s)) + εj)ds
∣∣∣

≤ M +H

Γ(q)

{ (t2 − t1)
q

q
+

(t2 − t1)
q

q

}
= 2

M + 1

qΓ(q)
(t2 − t1)

q.

(24)

Thus, the family {uεj (t)} is equicontinuous on [t0, t0+θ]. The Arzela-Ascoli Theorem

guarantees that there exists a subsequence {uεjk (t)} that is uniformly convergent in

the interval [t0, t0 + θ]. Let

w(t) = lim
k→∞

uεjk (t).

Take the limit in (15) as k → ∞ and we see that w satisfies the initial value problem

(4) for t ∈ [t0, t0 + θ], i.e., it is a solution of IVP (13) for v0 = u0 and ε = 0. Now,

take the limit in (16) for ε = εjk as k → ∞ and we have m(t) ≤ w(t) ≤ u∗(t) on

[t0, t0 + θ].

In the case when the Dini fractional derivative is applied instead of the Caputo

fractional Dini derivative, the following result is obtained.

Lemma 3. (Comparison result by the Dini fractional derivative). Assume the

conditions of Lemma 2 are satisfied where inequality (14) is replaced by

c
t0
D
q

(3)V (t, ψ(0), ψ) ≤ G(t, V (t, x∗(t))), (25)

where ψ(s) = x∗(t+ s) for s ∈ [−r, 0] and ψ(ρ(t,ψ0)−t) = xρ(t,xt) in Eq. (7).

Then,

sup
s∈[−r,0]

V (t0 − s, φ(s)) ≤ u0

implies

V (t, x∗(t)) ≤ u∗(t), for t ∈ [t0, t0 + θ],

where u∗(t) = u(t; t0, u0, 0) is the maximal solution of IVP for scalar FrDE (13) for

v0 = u0 and ε = 0.

The proof of Lemma 3 follows from Remark 11 and Lemma 2.
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Corollary 1. Let Condition 1 of Lemma 2 be satisfied and the function V ∈
Λ([t0 − r, t0 + θ],∆) be such that, for any point t ∈ [t0, t0 + θ] such that

V (t, x∗(t) = sup
s∈[t−r,t]

V (s, x∗(s)),

the inequality
c
t0
Dq

(3)V (t, ψ(0)) ≤ 0 (26)

holds, where c
t0
Dq

(3)V (t, ψ(0)) denotes one of: the Caputo fractional Dini derivative
c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ(0)) or the Dini fractional derivative c
t0
D
q

(3)V (t, ψ(0), ψ) with

ψ(ρ(t,ψ0)−t) = xρ(t,xt) in Eq. (8) or (7), respectively.

Then, for t ∈ [t0, t0 + θ], the inequality

V (t, x∗(t)) ≤ sup
s∈[−r,0]

V (t0 − s, φ(s))

holds.

Proof. The proof of Corollary 2 follows from the fact that the corresponding IVP

for the scalar FrDE (13) with G(t, u) = 0, ε = 0, and v0 = sups∈[−r,0] V (t0 − s, φ(s)),

i.e., the equation c
t0
Dqu = 0, has a unique solution

u(t) = sup
s∈[−r,0]

V (t0 − s, φ(s)),

for t ∈ [t0, t0 + θ].

The result of Lemma 2 is also true on the half line.

6. PRACTICAL STABILITY RESULTS.

We will use various types of fractional derivatives of Lyapunov functions to obtain

sufficient conditions for different types of practical stability. The base of the study

will be the comparison results applying scalar fractional differential equation without

any type of delay. We will use in our method a fractional extension of the Razumikhin

method. Note that in [6] some stability results for delay FrDDE are obtained apply-

ing the Caputo fractional derivative of the Lyapunov function and the generalized

Razumikhin condition

sup
Θ∈[−r,t]

V (Θ, x(Θ)) = V (t, x(t)). (27)

Remark 13. Note that condition (27) is not very similar to the idea of Razumikhin

condition and it is very restrictive, but it is necessarily because of the application of

Caputo fractional derivative of the Lyapunov function.
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We will give sufficient conditions for practical stability of zero solution of FrDDE

(3) applying the Caputo fractional derivative of the Lyapunov function.

Theorem 1. (Practical stability by the Caputo fractional derivative). Let condi-

tions (A1)-(A3) be satisfied for a given number t0 ≥ 0 and for Ω ≡ C0. Suppose also

that here exists a continuously differentiable Lyapunov function V ∈ Λ([t0−r,∞),R
n
)

with V (t, 0) = 0, such that

(i) the inequalities

α1(‖x‖) ≤ V (t, x), for t ≥ t0, x ∈ R
n

V (t, x) ≤ α2(‖x‖), for t ≥ t0, x ∈ Sλ,

hold, where αi ∈ K, i = 1, 2, and λ > 0 is a given number.

(ii) for any t > t0 and for any solution x(t) = x(t; t0, φ) of (3) with φ ∈ C0 such

that

sup
Θ∈[t0−r,t]

V (Θ, x(Θ)) = V (t, x(t)),

the inequality
C
t0
D
q
tV (t, x(t)) ≤ 0

holds.

Then, the zero solution of (3) is practically stable w.r.t. (λ, α−1
1 (α2(λ))).

Proof. Let x(t) = x(t; t0, φ) be a solution of FrDDE (3) with ‖φ‖0 < λ. Define the

function

v(t) = sup
s∈[t0−r,t]

V (s, x(s)), t ≥ t0.

Obviously, the function v is nondecreasing. We will prove that

v(t) = v(t0), for t ≥ t0. (28)

Assume that (28) is not true, i.e., there exists a point T > t0 such that v(t) = v(t0),

for t ∈ [t0, T ], but v(t) > v(t0) and v is strictly increasing for t ∈ (T, T + ε], ε > 0

is a small enough number. Then v(s) = v(t0) ≥ V (s, x(s)), for s ∈ [t0, T ], and

v(t) = V (t, x(t)), for t ∈ (T, T + ε]. Therefore, for t ∈ (T, T + ε], the inequality

sup
Θ∈[t0−r,t]

V (Θ, x(Θ)) = v(t) = V (t, x(t))

holds, and according to condition (ii), the inequality C
t0
D
q
tV (t, x(t)) ≤ 0 holds. Then,

for any t ∈ (T, T + ε], we obtain

c
t0
Dqv(t) =

1

Γ (1− q)

t∫

t0

v′(s)

(t− s)
q ds ≤

1

Γ (1− q)

t∫

t0

V ′(s, x(s))

(t− s)
q ds =Ct0 D

q
tV (t, x(t)) ≤ 0,
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because v(s) ≥ V (s, x(s)) for s ∈ [t0, T + ε], and

t∫

t0

v′(s)

(t− s)
q ds =

t∫

t0

v′(s)− V ′(s, x(s))

(t− s)
q ds+

t∫

t0

V ′(s, x(s))

(t− s)
q ds

= −v(t0)− V (t0, x(t0))

(t− t0)
q − q

t∫

t0

v(s)− V (s, x(s))

(t− s)
q+1 ds+

t∫

t0

V ′(s, x(s))

(t− s)
q ds.

According to the assumption, we get v′(t) = 0, for t ∈ [t0, T ], and v′(t) > 0, for

t ∈ (T, T + ε]. Then, for any t ∈ (T, T + ε], we obtain

c
t0
Dqv(t) =

1

Γ (1− q)

t∫

t0

v′(s)

(t− s)
q ds =

1

Γ (1− q)

t∫

T

v′(s)

(t− s)
q ds > 0, t ∈ (T, T + ε].

The contradiction proves the inequality (28).

From condition (i), we get

α1(‖x(t)‖) ≤ V (t, x(t)) ≤ v(t) = v(t0) = sup
s∈[t0−r,t0]

V (s, φ(t0 + s))

≤ sup
s∈[t0−r,t0]

α2(‖φ(t0 + s)‖) ≤ α2(λ).

Remark 14. Note that Theorem 1 is similar to [6, Theorem 3.1], except for condition

(i). This condition leads to practical stability and it gives the bounds of both the

initial function and the solution.

Theorem 2. (Uniform practical stability by the Caputo fractional derivative). Let

conditions (A1)-(A3) be satisfied for t0 = 0 and Ω ≡ C0. Suppose that there exists

a continuously differentiable Lyapunov function V ∈ Λ([−r,∞),R
n
), with V (t, 0) =

0, t ≥ 0, such that condition (i) of Theorem 1 is satisfied for t ≥ 0 and

(ii) for any t0 ≥ 0 and any t > t0 such that

sup
Θ∈[t0−r,t]

V (Θ, x(Θ; t0, φ)) = V (t, x(t; t0, φ)),

the inequality
C
t0
D
q
tV (t, x(t; t0, φ)) ≤ 0

holds, where x(t; t0, φ) a solution of (3) with initial time t0 and initial function φ ∈ C0.

Then, the zero solution of (3) is uniformly practically stable w.r.t. (λ, α−1
1 (α2(λ))).

Now we will apply the Dini fractional derivative and the Caputo fractional Dini

derivative of Lyapunov functions to obtain sufficient conditions for practical stability.
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In this case, we will use the Razumikhin condition

sup
Θ∈[−r,0]

V (t+Θ, ψ(Θ)) = V (t, ψ(0)) (29)

for a function ψ ∈ C0.

Remark 15. Note that condition (29) is less restrictive than condition (27) and it

is closer to the idea of the original Razumikhin condition.

We will study the connection between the practical stability properties of the

system FrDDE (3) and the practical stability properties of the scalar FrDE (4) .

Theorem 3. (Practical stability by the Caputo fractional Dini derivative). Let the

following conditions be satisfied:

1. The conditions (A1)-(A4) are satisfied for a given t0 and Ω ≡ C0.

2. There exists a function V ∈ Λ([t0 − r,∞),R
n
) with V (t, 0) = 0 such that

(i) the inequalities

α1(‖x‖) ≤ V (t, x) for t ≥ t0, x ∈ R
n
,

V (t, x) ≤ α2(‖x‖) for t ≥ t0, x ∈ Sλ,

hold, where αi ∈ K, i = 1, 2, and λ > 0 is a given number;

(ii) For any functions ψ ∈ C0 and φ ∈ C0, with ‖φ‖0 ≤ λ, and for any point

t ≥ t0 such that

sup
s∈[−r,0]

V (t+ s, ψ(s)) = V (t, ψ(0)),

the inequality

c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ) ≤ g(t, V (t, ψ(0))) (30)

holds.

3. The zero solution of the scalar FrDE (4) is practically stable w.r.t. (α2(λ), A),

where A ≥ α2(λ) is a given number.

Then, the zero solution of FrDDE (3) is practically stable w.r.t. (λ, α−1
1 (A)).

Proof. From condition 3 of Theorem 3, for u0 ∈ R with |u0| < α2(λ), we have

|u(t; t0, u0)| < A, for t ≥ t0, (31)
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where u(t; t0, u0) is a solution of FrDE (4). Let x(t) = x(t; t0, φ) be any solution of

FrDDE (3) with ‖φ‖0 < λ, and let

ũ0 = max
s∈[−r,0]

V (t0 + s, φ(s)).

From Condition 2 (i), it follows that

ũ0 ≤ max
s∈[−r,0]

α2(‖φ(s)‖) ≤ α2(λ).

Therefore, the maximal solution u∗(t) = u(t; t0, ũ0) of FrDE (4) satisfies inequality

(31). The conditions of Lemma 2 are satisfied for D = R
n
, θ = ∞, and G(t, u) =

g(t, u). According to Lemma 2, the inequality

V (t, x∗ (t)) ≤ u∗(t), for t ≥ t0, (32)

holds. Then, from condition 2 (i) and inequalities (31), (32) we obtain

α1(‖x∗(t)‖) ≤ V (t, x∗ (t)) ≤ u∗(t) < A,

which implies that

‖x∗ (t)‖ < a−1
1 (A), for t ≥ t0.

Note that A ≥ α2(λ) ≥ α1(λ) or λ ≤ α−1
1 (A). Therefore, according to Definition 1,

the zero solution is practically stable w.r.t. (λ, a−1
1 (A)).

In the case when the Caputo fractional derivative c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ) in The-

orem 3 is replaced by the Dini fractional derivative c
t0
D
q

(3)V (t, ψ(0), ψ), we obtain the

following result:

Theorem 4. (Practical stability by the Dini fractional derivative). Let conditions

1 and 3 of Theorem 3 be satisfied, and

2. There exists a function V ∈ Λ([t0 − r,∞),R
n
) with V (t, 0) = 0, such that

(i) the inequalities

α1(‖x‖) ≤ V (t, x) for t ≥ t0, x ∈ R
n
,

V (t, x) ≤ α2(‖x‖) for t ≥ t0, x ∈ Sλ,

hold, where αi ∈ K, i = 1, 2, and λ > 0 is a given number;

(ii) for any function ψ ∈ C0 and for any point t ≥ t0 such that

sup
s∈[−r,0]

V (t+ s, ψ(s)) = V (t, ψ(0)),

the inequality
c
t0
D
q

(3)V (t, ψ(0), ψ) ≤ g(t, V (t, ψ(0))) (33)

holds.
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Then, the zero solution of FrDDE (3) is practically stable w.r.t. (λ, α−1
1 (A)).

The proof of Theorem 4 is similar to the one of Theorem 3 where Lemma 3 is used

instead of Lemma 2.

In the case of the zero function on the right side part of the FrDE (4), we obtain:

Corollary 2. Let the conditions of Theorem 3/ Theorem 4 be satisfied with g(t, u) ≡
0. Then, the zero solution of FrDDE (3) is practically stable w.r.t. (λ, α−1

1 (α2(λ))).

Theorem 5. (Uniform practical stability by the Caputo fractional Dini derivative).

Let conditions (A1)-(A3) be satisfied for t0 = 0 and Ω ≡ C0. Suppose that there exists

a continuously differentiable Lyapunov function V ∈ Λ([−r,∞),R
n
) with V (t, 0) =

0, t ≥ 0, such that condition (i) of Theorem 3 is satisfied for t ≥ 0, and

(ii) for any t0 ≥ 0, for any functions ψ ∈ C0 and φ ∈ C0 with ‖φ‖0 ≤ λ, and for

any point t ≥ t0 such that

sup
s∈[−r,0]

V (t+ s, ψ(s)) = V (t, ψ(0)),

the inequality
c
t0
D
q

(3)V (t, ψ(0), ψ; t0, φ) ≤ 0 (34)

holds. Then, the zero solution of (3) is uniformly practically stable w.r.t. (λ, α−1
1 (λ)).

The proof of Theorem 5 follows from Theorem 3 and the fact that the solution of

FrDE (4) with g(t, u) ≡ 0 is u(t; t0, v0) = v0, for any t0 ≥ 0 and v0 ∈ R, i.e., it is

uniformly practically stable w.r.t. (λ, λ).

Theorem 6. (Uniform practical stability by the Dini fractional derivative). Let

conditions (A1)-(A3) be satisfied for t0 = 0 and Ω ≡ C0. Suppose that there exists

a continuously differentiable Lyapunov function V ∈ Λ([−r,∞),R
n
) with V (t, 0) =

0, t ≥ 0, such that condition (i) of Theorem 3 is satisfied for t ≥ 0 and

(ii) for any t0 ≥ 0, any functions ψ ∈ C0 and any point t ≥ t0 such that

sup
s∈[−r,0]

V (t+ s, ψ(s)) = V (t, ψ(0)),

the inequality
c
t0
D
q

(3)V (t, ψ(0), ψ) ≤ 0 (35)

holds. Then, the zero solution of (3) is uniformly practically stable w.r.t. (λ, α−1
1 (λ)).

Remark 16. Note that when the Dini fractional derivative or the Caputo fractional

Dini derivative is applied in the obtained sufficient conditions

- the less restrictive condition (29) is used instead of the condition (27);
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- the Lyapunov function need only be continuous without the restriction of dif-

ferentiability.

7. APPLICATIONS

Example 3. (Constant delay and the Caputo fractional derivative). Consider the

IVP for the scalar linear FrDDE

C
0 D

0.4
t x(t) = −(| cos(t)|+ 1.5)x(t) + | sin(t)|x(t − π) for t > 0,

x(s) = φ(s) for s ∈ [−π, 0].
(36)

Consider the quadratic Lyapunov function, i.e., V (t, x) = x2. Let α1(x) = 0.5x2,

α2(x) = x, and λ = 1. Then, condition (i) of Theorem 1 is satisfied.

Let x be a solution of IVP for FrDDE (37), and t > 0 be such that

V (t, x(t)) = x2(t) ≥ x2(s) = V (s, x(s)),

for all s ∈ [−π, t). Then, according to [8], we get

C
0 D

0.4
t V (t, x(t)) ≤ 2x(t) C0 D

0.4
t x(t) = −2(| cos(t)|+ 1.5)(x(t))2 + 2| sin(t)|x(t)x(t − π)

≤ −2(| cos(t)| − | sin(t)|+ 1.5)(x(t))2 ≤ 0.

According to Theorem 1, the zero solution of (36) is practically stable w.r.t. (1,1),

i.e. for any initial function φ ∈ S1, the solution is also in the ball S1. The graphs of

the absolute values of the solutions x1, x2, x3 of the IVP for FDDE (36), with initial

functions φ1(s) = sin(s), φ2(s) = cos(s) and φ3(s) = 0.5 s
s−1 , for s ∈ [−π, 0], are given

in Figure 1.

Example 4. (Constant delay). Consider the IVP for the scalar linear FrDDE

C
0 D

0.4
t x(t) = g(t)x(t) + 0.1x(t− π) for t > 0,

x(s) = φ(s) for s ∈ [−π, 0],
(37)

where

g(t) = −0.5

RL
0 D0.4

(
sin2(t) + 1

)

sin2(t) + 1
− 0.1, t > 0,

xt(s) = x(t−π) for s ∈ [−π, 0], and ρ(t, u) ≡ t−π. Therefore, xρ(t,xt) = x(ρ(t, xt)) =

x(t− π).

Denote f(t, x, y) = g(t)x+ 0.1y.

Case 1. Consider the quadratic Lyapunov function, i.e. V (t, x) = x2. Let x be a

solution of IVP for FrDDE (37), and t > 0 be such that

V (t, x(t)) = x2(t) ≥ x2(s) = V (s, x(s)),
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Figure 1: Graph of the the absolute values of the solutions x1, x2, x3.

for all s ∈ [−π, t). Then, according to [8], we get

C
0 D

0.4
t V (t, x(t)) ≤ 2x(t) C0 D

0.4
t x(t) = 2(x(t))2g(t) + 0.2x(t)x(t − π)

≤ 2(x(t))2g(t) + 0.1x2(t) + 0.1x2(t− π) ≤ 2x2(t)(0.1 + g(t)).
(38)

The sign of C
0 D

0.4
t V (t, x(t)) is changeable (the graph of the function g + 0.1 is given

in Figure 2).

Case 2. Consider the function

V (t, x) = (sin2(t) + 1)x2,

for t ≥ −π and x ∈ R. Then, condition 2(i) of Theorem 3 is satisfied with t0 = 0,

α1(u) = u2, α2(u) = 2u, and λ = 1, because

sin2(t) + 1 ∈ [1, 2], ∀t ≥ 0.

Case 2.1: Caputo fractional derivative. Let x be a solution of IVP for FrDDE (37).

Then, we obtain

C
0 D

0.4
t V (t, x(t)) =

1

Γ (1− q)

t∫

0

(t− s)−0.4
(
2(sin2(s) + 1)x(s)x′(s) + sin(2s)x2(s)

)
ds.

The fractional derivative of this function V is difficult to obtain so it is difficult to

discuss its sign.
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Figure 2: Graph of the function g + 0.1.

Case 2.2: Dini fractional derivative. Let ψ ∈ C([−π, 0],R) be a function and

t > 0 be a point such that

V (t, ψ(0)) = (sin2(t) + 1)ψ2(0) ≥ (sin2(t+ s) + 1)ψ2(s), s ∈ [−π, 0).

Therefore,

(sin2(t) + 1)ψ2(−π) = (sin2(t− π) + 1)ψ2(−π) ≤ (sin2(t) + 1)ψ2(0).

Note that, in this case, ψρ(t,ψ0)−t = ψ(−π). Then, according to Example 2 and Eq.

(11), we obtain

0D
0.4
(37)V (t, ψ(0), ψ(−π))

= 2ψ(0)(sin2(t) + 1)f(t, ψ(0), ψ(−π)) + (ψ(0))2 RL
0 D0.4

(
(sin2(t) + 1)

)

= 2ψ(0)(sin2(t) + 1)
(
g(t)ψ(0) + 0.1ψ(−π)

)
+ (ψ(0))2 RL

0 D0.4
(
sin2(t) + 1

)

= ψ2(0)
(
2(sin2(t) + 1)g(t) + RL

0 D0.4
(
sin2(t) + 1

))

+ 0.2ψ(0)(sin2(t) + 1)ψ(−π)
≤ −0.2ψ2(0)(sin2(t) + 1) + 0.1(sin2(t) + 1)(ψ2(0) + ψ2(−π)) = 0.

Therefore, the conditions of Theorem 4 are satisfied, with g(t, u) ≡ 0, and ac-

cording to Corollary 2, the zero solution of (37) is practically stable w.r.t. (1,
√
11)

because α−1
1 (u) =

√
u and α−1

1 (α2(1)) =
√
2.
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Figure 3: Graph of the the absolute values of the solutions x1, x2, x3.

Case 2.3: Caputo fractional Dini derivative . According to Remark 11 and Case

2.2, the inequality

c
0D

0.4
(37)V (t, ψ(0), ψ(−h); 0, φ(0)) = 0D

0.4
(37)V (t, ψ(0), ψ(−h))− 0.1φ2(0)

t0.4Γ(0.6)
≤ 0

holds. Therefore, the conditions of Theorem 3 are satisfied, with g(t, u) ≡ 0, and

according to Corollary 2, the zero solution of (37) is practically stable w.r.t. (1,
√
2).

The graphs of the absolute values of the solutions x1, x2, x3 of the IVP for FrDDE

(37), with initial functions φ1(s) = sin(s), φ2(s) = 0.5−0.5 cos(s) and φ3(s) = 0.5 s
s−1 ,

for s ∈ [−π, 0], are given in Figure 3.

Example 5. (Time variable delay). Consider the IVP for the scalar linear FrDDE

C
0 D

0.4
t x(t) = g(t)x(t) + 0.1x(t− sin2(t) + 1− π) for t > 0,

x(s) = φ(s) for s ∈ [−π, 0],
(39)

where

g(t) = −0.5

RL
0 D0.4

(
m(t)

)

m(t)
− 0.1, m(t) =

0.1t+ π

t+ 2π
, t > 0,

and ρ(t, u) = t− sin2(t)+1−π. Note that t−π ≤ ρ(t, u) ≤ t, for t ≥ 0, i.e., condition

(A2) is satisfied. Consider the function V (t, x) = m(t)x2, for t ≥ −π, x ∈ R. Then,

condition 2(i) of Theorem 3 is satisfied, with t0 = 0, α1(u) = 0.5u2, α2(u) = 0.9u,

and λ = 1, because
0.1t+ π

t+ 2π
∈ [0.5, 0.9], ∀t ≥ 0.
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Let ψ ∈ C([−π, 0],R) be a function and t ≥ 0 be a point such that

V (t, ψ(0)) = m(t)ψ2(0) ≥ m(t+ s)ψ2(s) = V (t+ s, ψ(s)), s ∈ [−π, 0)

Then, since ξ = − sin2(t) + 1− π ∈ [−π, 0], we have

m(t)φ2(0) ≥ m(t+ ξ)ψ2(ξ) = m(t− sin2(t) + 1− π)ψ2(− sin2(t) + 1− π)

≥ m(t)ψ2(− sin2(t) + 1− π).

Note that, in this case, ψρ(t,ψ0)−t = ψ(− sin2(t) + 1 − π). According to Example 2

and Eq. (11), we obtain

0D
0.4
(37)V (t, ψ(0), ψ)

= 2ψ(0)m(t)f(t, ψ(0), ψρ(t,ψ0)−t) + (ψ(0))2 RL
0 D0.4

(
m(t)

)

= 2ψ(0)m(t)
(
g(t)ψ(0) + 0.1ψ(− sin2(t) + 1− π)

)
+ (ψ(0))2 RL

0 D0.4
(
m(t)

)

= ψ2(0)
(
2m(t)g(t) + RL

0 D0.4m(t)
)
+ 0.2ψ(0)m(t)ψ(− sin2(t) + 1− π)

≤ −0.2ψ2(0)m(t) + 0.1m(t)(ψ2(0) + ψ2(− sin2(t) + 1− π)) = 0,

and

c
0D

0.4
(39)V (t, ψ(0), ψ; 0, φ(0)) = 0D

0.4
(39)V (t, ψ(0), ψ)− 0.5φ2(0)

t0.4Γ(0.6)
≤ 0.

Therefore, the conditions of Theorem 3/ Theorem 4 are satisfied with g(t, u) ≡ 0,

and according to Corollary 2, the zero solution of (39) is practically stable w.r.t.

(λ, α−1
1 (α2(1))) = (1,

√
1.8).

The graphs of the absolute values of the solutions x1, x2, x3 of the IVP for FDDE

(39), with initial functions φ1(s) = sin(s), φ2(s) = cos(s), and φ3(s) = 0.5 s
s−1 , for

s ∈ [−π, 0], are given in Figure 4.

Example 6. (State dependent delay). Consider the IVP for the scalar linear FrDDE

with state dependent delay

C
0 D

0.4
t x(t) = g(t)x(t) + 0.1x(t− sin2(x(t− π)) + 1− π) for t > 0,

x(s) = φ(s) for s ∈ [−π, 0],
(40)

where f(t, x, u) = g(t)x+ 0.1u,

g(t) = −0.5
t+ 1

0.1t+ 1.1
RL
0 D0.4 0.1t+ 1.1

t+ 1
− 0.1, t > 0,

xt(s) ≡ x(t − π), and ρ(t, u) = t − sin2(u) + 1 − π ∈ [t − π, t], for t ≥ 0, i.e., the

condition (A2) is satisfied.
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Figure 4: Graph of the the absolute values of the solutions x1, x2, x3.

Consider the Lyapunov function

V (t, x) =
0.1t+ 1.1

t+ 1
x2.

Then, condition 2(i) of Theorem 3 is satisfied, with t0 = 0, α1(u) = 0.1u2, α2(u) =

1.1u, and λ = 1, because 0.1t+1.1
t+1 ∈ [0.1, 1.1].

Let ψ ∈ C([−π, 0],R) be such that, for any t > 0, the inequality

V (t, ψ(0)) =
0.1t+ 1.1

t+ 1
ψ2(0) ≥ 0.1(t+ s) + 1.1

t+ s+ 1
ψ2(s) = V (t+ s, ψ(s))

holds, for s ∈ [−π, 0). Similar to Example 2 and Eq. (11), applying ρ(t, ψ0) − t ∈
[−π, 0] and

0.1(t+ s) + 1.1

t+ s+ 1
≥ 0.1t+ 1.1

t+ 1
, s ∈ [−r, 0],

we obtain

0D
0.4
(40)V (t, ψ(0), ψ) = 2ψ(0)

0.1t+ 1.1

t+ 1

(
g(t)ψ(0) + 0.1ψρ(t,ψ0)−t

)

= 2ψ2(0)
0.1t+ 1.1

t+ 1
g(t) + 0.2ψ(0)

0.1t+ 1.1

t+ 1
ψρ(t,ψ0)−t

+ (ψ(0))2 RL
0 D0.4 0.1t+ 1.1

t+ 1

= 0.2
0.1t+ 1.1

t+ 1
ψ(0) ψρ(t,ψ0)−t − 0.2ψ2(0)

0.1t+ 1.1

t+ 1

≤ 0.1
0.1t+ 1.1

t+ 1
ψ2(0) + 0.1

0.1t+ 1.1

t+ 1
ψ2
ρ(t,ψ0)−t

− 0.2ψ2(0)
1.1t+ 0.01

t+ 0.1

≤ 0.1
1

t+ 0.1
ψ2(0) + 0.1

0.1(t+ s) + 1.1

t+ s+ 1
ψ2
ρ(t,ψ0)−t

− 0.2ψ2(0)
1

t+ 0.1
≤ 0.

(41)
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Therefore, conditions of Theorem 4 are satisfied and, according to Corollary 2, the

zero solution of (39) is practically stable w.r.t. (1,
√
11).

Remark 17. The above examples illustrate the importance of practically applicable

sufficient conditions to study stability properties of Caputo fractional derivatives with

delays, especially in the case of state dependent delays.
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