ATTRACTION AND MEAN CONVERGENCE THEOREMS FOR TWO COMMUTATIVE NONLINEAR MAPPINGS IN BANACH SPACES

WATARU TAKAHASHI, CHING-FENG WEN, AND JEN-CHIH YAO

Dedicated to Professor Ravi Agarwal on the occasion of his 70th birthday

Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan; Keio Research and Education Center for Natural Sciences, Keio University, Kouhoku-ku, Yokohama 223-8521, Japan; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

wataru@is.titech.ac.jp; wataru@a00.itscom.net

Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan
cfwen@kmu.edu.tw

Center for General Education, China Medical University, Taichung 40402, Taiwan
yaojc@mail.cmu.edu.tw

ABSTRACT. In this paper, using the class of 2-generalized nonspreading mappings which was defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a Hilbert space, we prove an attractive point theorem in a Banach space. Then we prove a mean convergence theorem of Baillon’s type [2] without convexity for commutative 2-generalized nonspreading mappings in a Banach space.

AMS (MOS) Subject Classification. 47H05, 47H09

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty subset of H. Let T be a mapping of C into H. Then we denote by $F(T)$ the set of fixed points of T and by $A(T)$ the set of attractive points [27] of T, i.e.,

(i) $F(T) = \{ z \in C : Tz = z \}$;

(ii) $A(T) = \{ z \in H : \|Tx - z\| \leq \|x - z\|, \forall x \in C \}$.

We know from [27] that $A(T)$ is closed and convex. This property is important for proving mean convergence theorems. Such a concept of attractive points was defined in a Banach space; see [20]. A mapping $T : C \rightarrow H$ is said to be nonexpansive [4] if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. Baillon [2] proved the first mean convergence theorem in a Hilbert space.
Theorem 1.1 ([2]). Let C be a bounded, closed and convex subset of H and let $T : C \to C$ be nonexpansive. Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element $z \in F(T)$.

This theorem for nonexpansive mappings has been extended to Banach spaces by many authors; see, for example, [3, 5]. On the other hand, in 2010, Kocourek, Takahashi and Yao [13] defined a broad class of nonlinear mappings in a Hilbert space: Let H be a Hilbert space and let C be a nonempty subset of H. A mapping $T : C \to H$ is called \textit{generalized hybrid} [13] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \leq \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Such a mapping T is called (α, β)-\textit{generalized hybrid}. Notice that the class of generalized hybrid mappings covers several well-known mappings. For example, a $(1,0)$-generalized hybrid mapping is nonexpansive, i.e.,

$$\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in C.$$

It is \textit{nonsparing} [17, 18] for $\alpha = 2$ and $\beta = 1$, i.e.,

$$2\|Tx - Ty\|^2 \leq \|Tx - y\|^2 + \|Ty - x\|^2, \quad \forall x, y \in C.$$

It is also \textit{hybrid} [25] for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$, i.e.,

$$3\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2, \quad \forall x, y \in C.$$

In general, nonsparing and hybrid mappings are not continuous; see [10]. The mean convergence theorem by Baillon [2] for nonexpansive mappings has been extended to generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi and Yao [13]. Furthermore, Takahashi and Takeuchi [27] proved the following mean convergence theorem without convexity in a Hilbert space.

Theorem 1.2 ([27]). Let H be a Hilbert space and let C be a nonempty subset of H. Let T be a generalized hybrid mapping from C into itself. Assume that $\{T^n z\}$ for some $z \in C$ is bounded and define

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

for all $x \in C$ and $n \in \mathbb{N}$. Then $\{S_n x\}$ converges weakly to $u_0 \in A(T)$, where $u_0 = \lim_{n \to \infty} P_{A(T)} T^n x$ and $P_{A(T)}$ is the metric projection of H onto $A(T)$.
Maruyama, Takahashi and Yao [21] also defined a more broad class of nonlinear mappings called 2-generalized hybrid which covers generalized hybrid mappings in a Hilbert space. Let C be a nonempty subset of H and let T be a mapping of C into H. A mapping $T : C \to H$ is 2-generalized hybrid [21] if there exist $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that

$$
\alpha_1 \|T^2 x - Ty\|^2 + \alpha_2 \|T x - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \|x - Ty\|^2 \\
\leq \beta_1 \|T^2 x - y\|^2 + \beta_2 \|T x - y\|^2 + (1 - \beta_1 - \beta_2) \|x - y\|^2
$$

for all $x, y \in C$.

Recently, Hojo, Takahashi and Takahashi [6] proved attractive and mean convergence theorems without convexity for commutative 2-generalized hybrid mappings in a Hilbert space. These results generalize Takahashi and Takeuchi’s theorem (Theorem 1.2) and Kohsaka’s theorem [15] which is a mean convergence theorem for commutative λ-hybrid mappings in a Hilbert space.

In this paper, using the class of 2-generalized nonspreading mappings which was defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a Hilbert space, we prove an attractive point theorem in a Banach space. This theorem generalizes Hojo, Takahashi and Takahashi’s attractive point theorem [6] in a Hilbert space. Then we prove a mean convergence theorem of Baillon’s type [2] without convexity for commutative 2-generalized nonspreading mappings in a Banach space. This result is a general mean convergence theorem which extends Baillon’s theorem (Theorem 1.1) to a Banach space.

2. PRELIMINARIES

Let E be a real Banach space with norm $\| \cdot \|$ and let E^* be the topological dual space of E. We denote the value of $y^* \in E^*$ at $x \in E$ by $\langle x, y^* \rangle$. When $\{x_n\}$ is a sequence in E, we denote the strong convergence of $\{x_n\}$ to $x \in E$ by $x_n \to x$ and the weak convergence by $x_n \rightharpoonup x$. The modulus δ of convexity of E is defined by

$$
\delta(\epsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x - y\| \geq \epsilon \right\}
$$

for every ϵ with $0 \leq \epsilon \leq 2$. A Banach space E is said to be uniformly convex if $\delta(\epsilon) > 0$ for every $\epsilon > 0$. A uniformly convex Banach space is strictly convex and reflexive. Let C be a nonempty subset of a Banach space E. A mapping $T : C \to E$ is nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. A mapping $T : C \to E$ is quasi-nonexpansive if $F(T) \neq \emptyset$ and $\|Tx - y\| \leq \|x - y\|$ for all $x \in C$ and $y \in F(T)$, where $F(T)$ is the set of fixed points of T. If C is a nonempty, closed and convex subset of a strictly convex Banach space E and $T : C \to E$ is quasi-nonexpansive, then $F(T)$ is closed and convex; see Itoh and Takahashi [11].
Let \(E \) be a Banach space. The duality mapping \(J \) from \(E \) into \(2^{E^*} \) is defined by
\[
J x = \{ x^* \in E^* : \langle x, x^* \rangle = \| x \|^2 = \| x^* \|^2 \}
\]
for every \(x \in E \). Let \(U = \{ x \in E : \| x \| = 1 \} \). The norm of \(E \) is said to be Gâteaux differentiable if for each \(x, y \in U \), the limit
\[
\lim_{t \to 0} \frac{\| x + ty \| - \| x \|}{t}
\]
exists. In this case, \(E \) is called smooth. We know that \(E \) is smooth if and only if \(J \) is a single-valued mapping of \(E \) into \(E^* \). We also know that \(E \) is reflexive if and only if \(J \) is surjective, and \(E \) is strictly convex if and only if \(J \) is one-to-one. Therefore, if \(E \) is a smooth, strictly convex and reflexive Banach space, then \(J \) is a single-valued bijection. The norm of \(E \) is said to be uniformly Gâteaux differentiable if for each \(y \in U \), the limit (2.1) is attained uniformly for \(x \in U \). It is also said to be Fréchet differentiable if for each \(x \in U \), the limit (2.1) is attained uniformly for \(y \in U \). A Banach space \(E \) is called uniformly smooth if the limit (2.1) is attained uniformly for \(x, y \in U \). It is known that if the norm of \(E \) is uniformly Gâteaux differentiable, then \(J \) is uniformly norm to weak* continuous on each bounded subset of \(E \), and if the norm of \(E \) is Fréchet differentiable, then \(J \) is norm to norm continuous. If \(E \) is uniformly smooth, \(J \) is uniformly norm to norm continuous on each bounded subset of \(E \). For more details, see [23, 24].

Lemma 2.1 ([23, 24]). Let \(E \) be a smooth Banach space and let \(J \) be the duality mapping on \(E \). Then \(\langle x - y, Jx - Jy \rangle \geq 0 \) for all \(x, y \in E \). Furthermore, if \(E \) is strictly convex and \(\langle x - y, Jx - Jy \rangle = 0 \), then \(x = y \).

Let \(E \) be a smooth Banach space. The function \(\phi : E \times E \to (-\infty, \infty) \) is defined by
\[
\phi(x, y) = \| x \|^2 - 2\langle x, Jy \rangle + \| y \|^2
\]
for \(x, y \in E \), where \(J \) is the duality mapping of \(E \); see [1] and [12]. We have from the definition of \(\phi \) that
\[
\phi(x, y) = \phi(x, z) + \phi(z, y) + 2\langle x - z, Jz - Jy \rangle
\]
for all \(x, y, z \in E \). From \((\| x \| - \| y \|)^2 \leq \phi(x, y) \) for all \(x, y \in E \), we can see that \(\phi(x, y) \geq 0 \). Furthermore, we can obtain the following equality:
\[
2\langle x - y, Jz - Jw \rangle = \phi(x, w) + \phi(y, z) - \phi(x, z) - \phi(y, w)
\]
for \(x, y, z, w \in E \). If \(E \) is additionally assumed to be strictly convex, then from Lemma 2.1 we have
\[
\phi(x, y) = 0 \iff x = y.
\]

The following lemma is in Xu [33].
Lemma 2.2 ([33]). Let E be a uniformly convex Banach space and let $r > 0$. Then there exists a strictly increasing, continuous and convex function $g : [0, \infty) \to [0, \infty)$ such that $g(0) = 0$ and
\[
\|\lambda x + (1 - \lambda)y\|^2 \leq \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)g(\|x - y\|)
\]
for all $x, y \in B_r$ and λ with $0 \leq \lambda \leq 1$, where $B_r = \{z \in E : \|z\| \leq r\}$.

Using Lemma 2.2, we have the following lemma by Kamimura and Takahashi [12].

Lemma 2.3 ([12]). Let E be a smooth and uniformly convex Banach space and let $r > 0$. Then there exists a strictly increasing, continuous and convex function $g : [0, 2r] \to \mathbb{R}$ such that $g(0) = 0$ and
\[
g(\|x - y\|) \leq \phi(x, y)
\]
for all $x, y \in B_r$, where $B_r = \{z \in E : \|z\| \leq r\}$.

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T be a mapping of C into E. We denote by $A(T)$ the set of attractive points of T, i.e., $A(T) = \{z \in E : \phi(z, Tx) \leq \phi(z, x), \forall x \in C\}$; see [20].

Lemma 2.4 ([20]). Let E be a smooth Banach space and let C be a nonempty subset of E. Let T be a mapping from C into E. Then $A(T)$ is a closed and convex subset of E.

Let E be a smooth Banach space and let C be a nonempty subset of E. Then a mapping $T : C \to E$ is called generalized nonexpansive [8] if $F(T) \neq \emptyset$ and
\[
\phi(Tx, y) \leq \phi(x, y)
\]
for all $x \in C$ and $y \in F(T)$; see also [32]. Let D be a nonempty subset of a Banach space E. A mapping $R : E \to D$ is said to be sunny if
\[
R(Rx + t(x - Rx)) = Rx
\]
for all $x \in E$ and $t \geq 0$. A mapping $R : E \to D$ is said to be a retraction or a projection if $Rx = x$ for all $x \in D$. A nonempty subset D of a smooth Banach space E is said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive retraction) R from E onto D; see [8] for more details. The following results are in Ibaraki and Takahashi [8].

Lemma 2.5 ([8]). Let C be a nonempty closed sunny generalized nonexpansive retract of a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive retraction from E onto C is uniquely determined.
Lemma 2.6 ([8]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C and let $(x, z) \in E \times C$. Then the following hold:

(i) $z = Rx$ if and only if $\langle x - z, Jy - Jz \rangle \leq 0$ for all $y \in C$;
(ii) $\phi(Rx, z) + \phi(x, Rx) \leq \phi(x, z)$.

In 2007, Kohsaka and Takahashi [16] proved the following results:

Lemma 2.7 ([16]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.8 ([16]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny generalized nonexpansive retraction from E onto C and let $(x, z) \in E \times C$. Then the following are equivalent:

(i) $z = Rx$;
(ii) $\phi(x, z) = \min_{y \in C} \phi(x, y)$.

Ibaraki and Takahashi [9] also obtained the following result concerning the set of fixed points of a generalized nonexpansive mapping.

Lemma 2.9 ([9]). Let E be a reflexive, strictly convex and smooth Banach space and let T be a generalized nonexpansive mapping from E into itself. Then $F(T)$ is closed and $JF(T)$ is closed and convex.

The following theorem is proved by using Lemmas 2.7 and 2.9.

Lemma 2.10 ([9]). Let E be a reflexive, strictly convex and smooth Banach space and let T be a generalized nonexpansive mapping from E into itself. Then $F(T)$ is a sunny generalized nonexpansive retract of E.

Using Lemma 2.7, we also have the following result.

Lemma 2.11 ([26]). Let E be a smooth, strictly convex and reflexive Banach space and let $\{C_i : i \in I\}$ be a family of sunny generalized nonexpansive retracts of E such that $\cap_{i \in I} C_i$ is nonempty. Then $\cap_{i \in I} C_i$ is a sunny generalized nonexpansive retract of E.

Let l^∞ be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^\infty)^*$ (the dual space of l^∞). Then, we denote by $\mu(f)$ the value of μ at
\[f = (x_1, x_2, x_3, \ldots) \in l^\infty. \] Sometimes, we denote by \(\mu_n(x_n) \) the value \(\mu(f) \). A linear functional \(\mu \) on \(l^\infty \) is called a mean if \(\mu(e) = ||\mu|| = 1 \), where \(e = (1, 1, 1, \ldots) \). A mean \(\mu \) is called a Banach limit on \(l^\infty \) if \(\mu_n(x_{n+1}) = \mu_n(x_n) \). We know that there exists a Banach limit on \(l^\infty \). If \(\mu \) is a Banach limit on \(l^\infty \), then for \(f = (x_1, x_2, x_3, \ldots) \in l^\infty \),

\[
\liminf_{n \to \infty} x_n \leq \mu_n(x_n) \leq \limsup_{n \to \infty} x_n.
\]

In particular, if \(f = (x_1, x_2, x_3, \ldots) \in l^\infty \) and \(x_n \to a \in \mathbb{R} \), then we have \(\mu(f) = \mu_n(x_n) = a \). For the proof of existence of a Banach limit and its other elementary properties, see [23].

3. FIXED POINT THEOREMS

Let \(E \) be a smooth Banach space and let \(C \) be a nonempty subset of \(E \). Then a mapping \(T : C \to E \) is called 2-generalized nonscattering [29] if there exist \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \delta_1, \delta_2 \in \mathbb{R} \) such that

\[
\begin{align*}
\alpha_1 \phi(T^2x, Ty) + \alpha_2 \phi(Tx, Ty) + (1 - \alpha_1 - \alpha_2) \phi(x, Ty) \\
+ \gamma_1 \{ \phi(Ty, T^2x) - \phi(Ty, x) \} + \gamma_2 \{ \phi(Ty, Tx) - \phi(Ty, x) \} \\
\leq \beta_1 \phi(T^2x, y) + \beta_2 \phi(Tx, y) + (1 - \beta_1 - \beta_2) \phi(x, y) \\
+ \delta_1 \{ \phi(y, T^2x) - \phi(y, x) \} + \delta_2 \{ \phi(y, Tx) - \phi(y, x) \}
\end{align*}
\]

for all \(x, y \in C \); see also [30]. Such a mapping is called \((\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \delta_1, \delta_2)\)-generalized nonscattering. We know that a \((0, \alpha_2, 0, \beta_2, 0, \gamma_2, 0, \delta_2)\)-generalized nonscattering mapping is generalized nonscattering in the sense of [14]. We also know that a \((0, 1, 0, 1, 0, 1, 0, 0)\)-generalized nonscattering mapping is nonscattering in the sense of [18].

Now we prove an attractive point theorem for commutative 2-generalized nonscattering mappings in a Banach space. Before proving it, we prove the following result.

Lemma 3.1. Let \(E \) be a smooth, strictly convex and reflexive Banach space with the duality mapping \(J \) and let \(C \) be a nonempty subset of \(E \). Let \(S \) and \(T \) be mappings of \(C \) into itself. Let \(\{x_n\} \) be a bounded sequence of \(E \) and let \(\mu \) be a mean on \(l^\infty \). Suppose that

\[
\mu_n \phi(x_n, Sy) \leq \mu_n \phi(x_n, y) \text{ and } \mu_n \phi(x_n, Ty) \leq \mu_n \phi(x_n, y)
\]

for all \(y \in C \). Then \(A(S) \cap A(T) \) is nonempty. Additionally, if \(C \) is closed and convex and \(\{x_n\} \subset C \), then \(F(S) \cap F(T) \) is nonempty.

Proof. Using a mean \(\mu \) and a bounded sequence \(\{x_n\} \), we define a function \(g : E^* \to \mathbb{R} \) as follows:

\[
g(x^*) = \mu_n(x_n, x^*)
\]
for all \(x^* \in E^* \). Since \(\mu \) is linear, \(g \) is also linear. Furthermore, we have
\[
|g(x^*)| = |\mu_n(x_n, x^*)| \\
\leq \|\mu\| \sup_{n \in \mathbb{N}} |\langle x_n, x^* \rangle| \\
\leq \|\mu\| \sup_{n \in \mathbb{N}} \|x_n\|\|x^*\| \\
= \sup_{n \in \mathbb{N}} \|x_n\|\|x^*\|
\]
for all \(x^* \in E^* \). Then \(g \) is a linear and bounded real-valued function on \(E^* \). Since \(E \) is reflexive, there exists a unique element \(z \) of \(E \) such that
\[
g(x^*) = \mu_n(x_n, x^*) = \langle z, x^* \rangle
\]
for all \(x^* \in E^* \). From (2.3) we have that for \(y \in C \) and \(n \in \mathbb{N} \),
\[
\phi(x, y) = \phi(x_n, Sy) + \phi(Sy, y) + 2\langle x_n - Sy, JSy - Jy \rangle.
\]
So, we have that for \(y \in C \),
\[
\mu_n\phi(x_n, y) = \mu_n\phi(x_n, Sy) + \mu_n\phi(Sy, y) + 2\mu_n\langle x_n - Sy, JSy - Jy \rangle \\
= \mu_n\phi(x_n, Sy) + \phi(Sy, y) + 2\langle z - Sy, JSy - Jy \rangle.
\]
Since, by assumption, \(\mu_n\phi(x_n, Sy) \leq \mu_n\phi(x_n, y) \) for all \(y \in C \), we have
\[
\mu_n\phi(x_n, y) \leq \mu_n\phi(x_n, y) + \phi(Sy, y) + 2\langle z - Sy, JSy - Jy \rangle.
\]
This implies that
\[
0 \leq \phi(Sy, y) + 2\langle z - Sy, JSy - Jy \rangle.
\]
Using (2.4), we have that
\[
0 \leq \phi(Sy, y) + \phi(z, y) + \phi(Sy, Sy) - \phi(z, Sy) - \phi(Sy, y)
\]
and hence \(\phi(z, Sy) \leq \phi(z, y) \). This implies that \(z \) is an element of \(A(S) \). Similarly, we have that \(\phi(z, Ty) \leq \phi(z, y) \) and hence \(z \in A(T) \). Therefore we have \(z \in A(S) \cap A(T) \). Additionally, if \(C \) is closed and convex and \(\{x_n\} \subset C \), we have that \(z \in \text{co}\{x_n : n \in \mathbb{N}\} \subset C \). In fact, if \(z \notin C \), then there exists \(y^* \in E^* \) by the separation theorem [23] such that \(\langle z, y^* \rangle < \inf_{y \in C} \langle y, y^* \rangle \). So, from \(\{x_n\} \subset C \) we have
\[
\langle z, y^* \rangle < \inf_{y \in C} \langle y, y^* \rangle \leq \inf_{n \in \mathbb{N}} \langle x_n, y^* \rangle \leq \mu_n \langle x_n, y^* \rangle = \langle z, y^* \rangle.
\]
This is a contradiction. Then we have \(z \in C \). Since \(z \in A(S) \cap A(T) \) and \(z \in C \), we have that
\[
\phi(z, Sz) \leq \phi(z, z) = 0 \quad \text{and} \quad \phi(z, Tz) \leq \phi(z, z) = 0
\]
and hence \(\phi(z, Sz) = 0 \) and \(\phi(z, Tz) = 0 \). Since \(E \) is strictly convex, we have \(z \in F(S) \cap F(T) \). This completes the proof. \(\square \)
Using Lemma 3.1, we prove an attractive point theorem for commutative 2-generalized nonspreading mappings in a Banach space.

Theorem 3.2. Let C be a nonempty subset of a smooth, strictly convex and reflexive Banach space E and let S and T be commutative 2-generalized nonspreading mappings of C into itself. Suppose that there exists an element $z \in C$ such that $\{S^{kT^l}z : k,l \in \mathbb{N} \cup \{0\}\}$ is bounded. Then $A(S) \cap A(T)$ is nonempty. Additionally, if C is closed and convex, then $F(S) \cap F(T)$ is nonempty.

Proof. Since S is a 2-generalized nonspreading mapping of C into itself, there exist $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \delta_1, \delta_2 \in \mathbb{R}$ such that for all $x, y \in C$,

\[
\alpha_1 \phi(S^2x, Sy) + \alpha_2 \phi(Sx, Sy) + (1 - \alpha_1 - \alpha_2) \phi(x, Sy)
\]

\[
+ \gamma_1 \{\phi(Sy, S^2x) - \phi(Sy, x)\} + \gamma_2 \{\phi(Sy, Sx) - \phi(Sy, x)\}
\]

\[
\leq \beta_1 \phi(S^2x, y) + \beta_2 \phi(Sx, y) + (1 - \beta_1 - \beta_2) \phi(x, y)
\]

\[
+ \delta_1 \{\phi(y, S^2x) - \phi(y, x)\} + \delta_2 \{\phi(y, Sx) - \phi(y, x)\}.
\]

By assumption, we can take $z \in C$ such that $\{S^{kT^l}z : k,l \in \mathbb{N} \cup \{0\}\}$ is bounded. Replacing x by $S^{kT^l}x$ in (3.2), we have that for any $y \in C$ and $k, l \in \mathbb{N} \cup \{0\}$,

\[
\alpha_1 \phi(S^{k+2T^l}z, Sy) + \alpha_2 \phi(S^{k+1T^l}z, Sy) + (1 - \alpha_1 - \alpha_2) \phi(S^{kT^l}z, Sy)
\]

\[
+ \gamma_1 \{\phi(Sy, S^{k+2T^l}z) - \phi(Sy, S^{kT^l}z)\} + \gamma_2 \{\phi(Sy, S^{k+1T^l}z) - \phi(Sy, S^{kT^l}z)\}
\]

\[
\leq \beta_1 \phi(S^{k+2T^l}z, y) + \beta_2 \phi(S^{k+1T^l}z, y) + (1 - \beta_1 - \beta_2) \phi(S^{kT^l}z, y)
\]

\[
+ \delta_1 \{\phi(y, S^{k+2T^l}z) - \phi(y, S^{kT^l}z)\} + \delta_2 \{\phi(y, S^{k+1T^l}z) - \phi(y, S^{kT^l}z)\}
\]

\[
= \beta_1 \{\phi(S^{k+2T^l}z, Sy) + \phi(Sy, y) + 2(S^{k+2T^l}z - Sy, JSy - Jy)\}
\]

\[
+ \beta_2 \{\phi(S^{k+1T^l}z, Sy) + \phi(Sy, y) + 2(S^{k+1T^l}z - Sy, JSy - Jy)\}
\]

\[
+ (1 - \beta_1 - \beta_2) \{\phi(S^{kT^l}z, Sy) + \phi(Sy, y) + 2(S^{kT^l}z - Sy, JSy - Jy)\}
\]

\[
+ \delta_1 \{\phi(y, S^{k+2T^l}z) - \phi(y, S^{kT^l}z)\} + \delta_2 \{\phi(y, S^{k+1T^l}z) - \phi(y, S^{kT^l}z)\}.
\]

This implies that

\[
0 \leq (\beta_1 - \alpha_1) \{\phi(S^{k+2T^l}z, Sy) - \phi(S^{kT^l}z, Sy)\}
\]

\[
+ (\beta_2 - \alpha_2) \{\phi(S^{k+1T^l}z, Sy) - \phi(S^{kT^l}z, Sy)\} + \phi(Sy, y)
\]

\[
+ 2(S^{kT^l}z - Sy + \beta_1(S^{k+2T^l}z - S^{kT^l}z) + \beta_2(S^{k+1T^l}z - S^{kT^l}z), JSy - Jy)
\]

\[
- \gamma_1 \{\phi(Sy, S^{k+2T^l}z) - \phi(Sy, S^{kT^l}z)\} - \gamma_2 \{\phi(Sy, S^{k+1T^l}z) - \phi(Sy, S^{kT^l}z)\}
\]

\[
+ \delta_1 \{\phi(y, S^{k+2T^l}z) - \phi(y, S^{kT^l}z)\} + \delta_2 \{\phi(y, S^{k+1T^l}z) - \phi(y, S^{kT^l}z)\}.
\]

Summing up these inequalities with respect to $k = 0, 1, \ldots, n$, we have

\[
0 \leq (\beta_1 - \alpha_1) \{\phi(S^{n+2T^l}z, Sy) + \phi(S^{n+1T^l}z, Sy)
\]

\[
- \phi(ST^l z, Sy) - \phi(T^l z, Sy)\}.
Furthermore, summing up these inequalities with respect to \(l = 0, 1, \ldots, n \), we have

\[
0 \leq (\beta_1 - \alpha_1) \sum_{l=0}^{n} \left\{ \phi(S^{n+2}T^l z, Sy) + \phi(S^{n+1}T^l z, Sy) \right\}
- \phi(ST^l z, Sy) - \phi(T^l z, Sy)

+ (\beta_2 - \alpha_2) \sum_{l=0}^{n} \left\{ \phi(S^{n+1}T^l z, Sy) - \phi(T^l z, Sy) \right\}
+ (n + 1)^2 \phi(Sy, y)

+ 2 \left\{ \sum_{l=0}^{n} \sum_{k=0}^{n} S^k T^l z + \beta_1 \sum_{l=0}^{n} (S^{n+2}T^l z + S^{n+1}T^l z - ST^l z - T^l z)
+ \beta_2 \sum_{l=0}^{n} (S^{n+1}T^l z - T^l z) - (n + 1)^2 Sy, JSy - Jy \right\}

- \gamma_1 \sum_{l=0}^{n} \left\{ \phi(Sy, S^{n+2}T^l z) + \phi(Sy, S^{n+1}T^l z) - \phi(Sy, ST^l z) - \phi(Sy, T^l z) \right\}

- \gamma_2 \sum_{l=0}^{n} \left\{ \phi(Sy, S^{n+1}T^l z) - \phi(Sy, T^l z) \right\}

+ \delta_1 \sum_{l=0}^{n} \left\{ \phi(y, S^{n+2}T^l z) + \phi(y, S^{n+1}T^l z) - \phi(y, ST^l z) - \phi(y, T^l z) \right\}

+ \delta_2 \sum_{l=0}^{n} \left\{ \phi(y, S^{n+1}T^l z) - \phi(y, T^l z) \right\}.
\]

Dividing by \((n + 1)^2\), we have

\[
0 \leq (\beta_1 - \alpha_1) \frac{1}{(n + 1)^2} \sum_{l=0}^{n} \left\{ \phi(S^{n+2}T^l z, Sy) + \phi(S^{n+1}T^l z, Sy) \right\}
- \phi(ST^l z, Sy) - \phi(T^l z, Sy)

+ (\beta_2 - \alpha_2) \frac{1}{(n + 1)^2} \sum_{l=0}^{n} \left\{ \phi(S^{n+1}T^l z, Sy) - \phi(T^l z, Sy) \right\}
+ (n + 1)^2 \phi(Sy, y).
\]
\begin{align*}
+ 2 \left(S_n z + \beta_1 \frac{1}{(n + 1)^2} \sum_{l=0}^{n} (S^{n+2} T^l z + S^{n+1} T^l z - S T^l z - T^l z) \\
+ \beta_2 \frac{1}{(n + 1)^2} \sum_{l=0}^{n} (S^{n+1} T^l z - T^l z) - S y, J S y - J y \right) \\
- \gamma_1 \frac{1}{(n + 1)^2} \sum_{l=0}^{n} \{ \phi(S y, S^{n+2} T^l z) + \phi(S y, S^{n+1} T^l z) \\
- \phi(S y, S T^l z) - \phi(S y, T^l z) \} \\
- \gamma_2 \frac{1}{(n + 1)^2} \sum_{l=0}^{n} \{ \phi(S y, S^{n+1} T^l z) - \phi(S y, T^l z) \} \\
+ \delta_1 \frac{1}{(n + 1)^2} \sum_{l=0}^{n} \{ \phi(y, S^{n+2} T^l z) + \phi(y, S^{n+1} T^l z) - \phi(y, S T^l z) - \phi(y, T^l z) \} \\
+ \delta_2 \frac{1}{(n + 1)^2} \sum_{l=0}^{n} \{ \phi(y, S^{n+1} T^l z) - \phi(y, T^l z) \},
\end{align*}

where $S_n z = \frac{1}{(n + 1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} S^k T^l z$. Since \{S^k T^l z\} is bounded by assumption, \{S_n z\} is bounded. Taking a Banach limit μ to both sides of this inequality, we have that

$$0 \leq \phi(S y, y) + 2 \mu_n \langle S_n z - S y, J S y - J y \rangle$$

and hence

$$0 \leq \phi(S y, y) + \mu_n \phi(S_n z, y) + \phi(S y, S y) - \mu_n \phi(S_n z, S y) - \phi(S y, y).$$

Thus, we have

$$\mu_n \phi(S_n z, S y) \leq \mu_n \phi(S_n z, y).$$

Similarly, replacing S and T by T and S, respectively, we have

$$\mu_n \phi(S_n z, T y) \leq \mu_n \phi(S_n z, y).$$

Using Lemma 3.1, we have that $A(S) \cap A(T)$ is nonempty. Additionally, if C is closed and convex, then $F(S) \cap F(T)$ is nonempty. \hfill \Box

Since commutative 2-generalized hybrid mappings in a Hilbert space are commutative 2-generalized nonspreading mappings in a Banach space, as a direct sequence of Theorem 3.2, we have the following theorem proved by Hojo, Takahashi and Takahashi [6] in a Hilbert space.

Theorem 3.3 ([6]). Let H be a Hilbert space, let C be a nonempty subset of H and let S and T be commutative 2-generalized hybrid mappings of C into itself. Suppose that there exists an element $z \in C$ such that \{S^k T^l z : k, l \in \mathbb{N} \cup \{0\}\} is bounded. Then $A(S) \cap A(T)$ is nonempty. Additionally, if C is closed and convex, then $F(S) \cap F(T)$ is nonempty.
4. NONLINEAR ERGODIC THEOREMS

Let E be a smooth Banach space, let C be a nonempty subset of E and let J be the duality mapping from E into E^*. Observe that if $T : C \to E$ is a 2-generalized nonspreading mapping and $F(T) \neq \emptyset$, then

$$\phi(u, Ty) \leq \phi(u, y)$$

for all $u \in F(T)$ and $y \in C$. Indeed, putting $x = u \in F(T)$ in (3.1), we obtain that

$$\alpha_1 \phi(u, Ty) + \alpha_2 \phi(u, Ty) + (1 - \alpha_1 - \alpha_2) \phi(u, Ty)$$
$$+ \gamma_1 \{\phi(Ty, u) - \phi(Ty, u)\} + \gamma_2 \{\phi(Ty, u) - \phi(Ty, u)\}$$
$$\leq \beta_1 \phi(u, y) + \beta_2 \phi(u, y) + (1 - \beta_1 - \beta_2) \phi(u, y)$$
$$+ \delta_1 \{\phi(y, u) - \phi(y, u)\} + \delta_2 \{\phi(y, u) - \phi(y, u)\}.$$

So, we have that

(4.1) \hspace{1cm} \phi(u, Ty) \leq \phi(u, y)

for all $u \in F(T)$ and $y \in C$. Similarly, putting $y = u \in F(T)$ in (3.1), we obtain that for $x \in C,$

$$\alpha_1 \phi(T^2 x, u) + \alpha_2 \phi(Tx, u) + (1 - \alpha_1 - \alpha_2) \phi(x, u)$$
$$+ \gamma_1 \{\phi(u, T^2 x) - \phi(u, x)\} + \gamma_2 \{\phi(u, Tx) - \phi(u, x)\}$$
$$\leq \beta_1 \phi(T^2 x, u) + \beta_2 \phi(Tx, u) + (1 - \beta_1 - \beta_2) \phi(x, u)$$
$$+ \delta_1 \{\phi(u, T^2 x) - \phi(u, x)\} + \delta_2 \{\phi(u, Tx) - \phi(u, x)\}$$

and hence

$$(\alpha_1 - \beta_1)\{\phi(T^2 x, u) - \phi(x, u)\} + (\alpha_2 - \beta_2)\{\phi(Tx, u) - \phi(x, u)\}$$
$$+ (\gamma_1 - \delta_1)\{\phi(u, T^2 x) - \phi(u, x)\} + (\gamma_2 - \delta_2)\{\phi(u, Tx) - \phi(u, x)\} \leq 0.$$

If $\alpha_1 - \beta_1 = 0$, $\gamma_1 \leq \delta_1$, $\gamma_2 \leq \delta_2$ and $\alpha_2 > \beta_2$, then we have from (4.1) that

$$(\alpha_2 - \beta_2)\{\phi(Tx, u) - \phi(x, u)\} \leq (\delta_2 - \gamma_2)\{\phi(u, T^2 x) - \phi(u, x)\}$$
$$+ (\delta_2 - \gamma_2)\{\phi(u, Tx) - \phi(u, x)\} \leq 0.$$

So, we have that

(4.2) \hspace{1cm} \phi(Tx, u) \leq \phi(x, u)

for all $x \in C$ and $u \in F(T)$. This implies that T is generalized nonexpansive in the sense of [8].

Now using the technique developed by [22] and [28], we can prove a mean convergence theorem without convexity for commutative 2-generalized nonspreading mappings in a Banach space. For proving this result, we need the following lemmas.
Lemma 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let S and T be commutative 2-generalized nonspringing mappings of C into itself. If $\{S^kT^l : k, l \in \mathbb{N} \cup \{0\}\}$ for some $z \in C$ is bounded and

$$S_n x = \frac{1}{(1+n)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} S^k T^l x$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$, then every weak cluster point of $\{S_n x\}$ is a point of $A(S) \cap A(T)$. Additionally, if C is closed and convex, then every weak cluster point of $\{S_n x\}$ is a point of $F(S) \cap F(T)$.

Proof. Since $S : C \to C$ is 2-generalized nonspringing, we have that for all $x, y \in C$, (3.2) holds. Since there exists $z \in C$ such that $\{S^kT^l z : k, l \in \mathbb{N} \cup \{0\}\}$ is bounded, $\{S^kT^l x : k, l \in \mathbb{N} \cup \{0\}\}$ for all $x \in C$ is bounded. Then as in the proof of Theorem 3.2, we have that for any $y \in C$

$$0 \leq (\beta_1 - \alpha_1) \frac{1}{(n+1)^2} \sum_{l=0}^{n} \{\phi(S^{n+2}T^l x, S y) + \phi(S^{n+1}T^l x, S y) - \phi(S^l x, S y)\}$$

$$+ (\beta_2 - \alpha_2) \frac{1}{(n+1)^2} \sum_{l=0}^{n} \{\phi(S^{n+1}T^l x, S y) - \phi(T^l x, S y)\} + \phi(S y, y)$$

$$+ 2 \left(\sum_{l=0}^{n} (S^{n+2}T^l x + S^{n+1}T^l x - ST^l x - T^l x) \right)$$

$$+ \frac{\beta_2}{(n+1)^2} \sum_{l=0}^{n} (S^{n}T^l x - T^l x - Sy, JSy - Jy)$$

$$- \gamma_1 \frac{1}{(n+1)^2} \sum_{l=0}^{n} \{\phi(S y, S^{n+2}T^l x) + \phi(S y, S^{n+1}T^l x) - \phi(S y, S^l x)\}$$

$$- \phi(S y, ST^l x) - \phi(S y, T^l x)\}$$

$$- \frac{\gamma_2}{(n+1)^2} \sum_{l=0}^{n} \{\phi(S y, S^{n+1}T^l x) - \phi(S y, T^l x)\}$$

$$+ \frac{\delta_1}{(n+1)^2} \sum_{l=0}^{n} \{\phi(y, S^{n+2}T^l x) + \phi(y, S^{n+1}T^l x) - \phi(y, ST^l x) - \phi(y, T^l x)\}$$

$$+ \frac{\delta_2}{(n+1)^2} \sum_{l=0}^{n} \{\phi(y, S^{n+1}T^l x) - \phi(y, T^l x)\}.$$

Since $\{S^kT^l x\}$ is bounded, $\{S_n x\}$ is bounded. Thus we have a subsequence $\{S_{n_i} x\}$ of $\{S_n x\}$ such that $\{S_{n_i} x\}$ converges weakly to a point $u \in E$. Letting $n_i \to \infty$, we obtain

$$0 \leq \phi(S y, y) + 2(u - Sy, JSy - Jy).$$
Using (2.4), we have that
\[0 \leq \phi(Sy, y) + \phi(u, y) + \phi(Sy, Sy) - \phi(u, Sy) - \phi(Sy, y) \]
and hence
\[\phi(u, Sy) \leq \phi(u, y). \]
This implies that \(u \) is an element of \(A(S) \). Similarly, we have that
\[\phi(u, Ty) \leq \phi(u, y). \]
and hence \(u \in A(T) \). Therefore we have \(u \in A(S) \cap A(T) \). Additionally, if \(C \) is closed and convex, we have that \(\{S_n z \} \subset C \) and then
\[u \in \overline{\sigma} \{S_n x : n \in \mathbb{N} \} \subset C. \]
Since \(u \in A(S) \cap A(T) \) and \(u \in C \), we have that
\[\phi(u, Su) \leq \phi(u, u) = 0 \quad \text{and} \quad \phi(u, Tu) \leq \phi(u, u) = 0 \]
and hence
\[\phi(u, Su) = 0 \quad \text{and} \quad \phi(u, Tu) = 0. \]
Since \(E \) is strictly convex, we have \(u \in F(S) \cap F(T) \). This completes the proof. \(\square \)

Let \(E \) be a smooth Banach space. Let \(C \) be a nonempty subset of \(E \) and let \(T \) be a mapping of \(C \) into \(E \). We denote by \(B(T) \) the set of skew-attractive points of \(T \), i.e., \(B(T) = \{ z \in E : \phi(Tx, z) \leq \phi(x, z), \forall x \in C \} \). The following result was proved by Lin and Takahashi [20].

Lemma 4.2 ([20]). Let \(E \) be a smooth Banach space and let \(C \) be a nonempty subset of \(E \). Let \(T \) be a mapping from \(C \) into \(E \). Then \(B(T) \) is closed.

Let \(E \) be a smooth, strictly convex and reflexive Banach space and let \(C \) be a nonempty subset of \(E \). Let \(T \) be a mapping of \(C \) into \(E \). Define a mapping \(T^* \) as follows:
\[T^* x^* = JT J^{-1} x^*, \quad \forall x^* \in JC, \]
where \(J \) is the duality mapping on \(E \) and \(J^{-1} \) is the duality mapping on \(E^* \). A mapping \(T^* \) is called the duality mapping of \(T \); see also [31] and [7]. It is easy to show that if \(T \) is a mapping of \(C \) into itself, then \(T^* \) is a mapping of \(JC \) into itself. In fact, for \(x^* \in JC \), we have \(J^{-1} x^* \in C \) and hence \(TJ^{-1} x^* \in C \). So, we have
\[T^* x^* = JT J^{-1} x^* \in JC. \]
Then, \(T^* \) is a mapping of \(JC \) into itself. Using Lemma 2.4, we have the following result.
Lemma 4.3 ([20]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into E and let T^* be the duality mapping of T. Then, the following hold:

1. $JB(T) = A(T^*)$;
2. $JA(T) = B(T^*)$.

In particular, $JB(T)$ is closed and convex.

Let $D = \{(k, l) : k, l \in \mathbb{N} \cup \{0\}\}$. Then D is a directed set by the binary relation:

$(k, l) \leq (i, j)$ if $k \leq i$ and $l \leq j$.

Theorem 4.4. Let E be a uniformly convex Banach space with a Fréchet differentiable norm and let C be a nonempty subset of E. Let $S, T : C \to C$ be commutative 2-generalized nonspreading mappings such that $\{S^kT^lz : k, l \in \mathbb{N} \cup \{0\}\}$ for some $z \in C$ is bounded, $A(S) = B(S)$ and $A(T) = B(T)$. Let R be the sunny generalized nonexpansive retraction of E onto $B(S) \cap B(T)$. Then, for any $x \in C$,

$$S_nx = \frac{1}{(n+1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} S^kT^lx$$

converges weakly to an element q of $A(S) \cap A(T)$, where $q = \lim_{(k,l) \in D} RS^kT^lx$.

Proof. We have from Theorem 3.2 that $A(S) \cap A(T) = B(S) \cap B(T)$ is nonempty. We know from Lemmas 2.11, 4.2 and 4.3 that $B(S) \cap B(T)$ is closed, and

$$J(B(S) \cap B(T)) = JB(S) \cap JB(T)$$

is closed and convex. So, from Lemma 2.5 and Lemma 2.7 there exists the sunny generalized nonexpansive retraction R of E onto $B(S) \cap B(T)$. From Lemma 2.8, this retraction R is characterized by

$$Rx = \arg\min_{u \in B(S) \cap B(T)} \phi(x, u).$$

We also know from Lemma 2.6 that

$$0 \leq \langle v - Rv, JRv - Ju \rangle, \quad \forall u \in B(S) \cap B(T), \ v \in C.$$

Adding up $\phi(Rv, u)$ to both sides of this inequality, we have

$$\phi(Rv, u) \leq \phi(Rv, u) + 2 \langle v - Rv, JRv - Ju \rangle
\quad (4.3)
= \phi(Rv, u) + \phi(v, u) + \phi(Rv, Rv) - \phi(v, Rv) - \phi(Rv, u)
= \phi(v, u) - \phi(v, Rv).$$

Since $\phi(Sz, u) \leq \phi(z, u)$ and $\phi(Tz, u) \leq \phi(z, u)$ for any $u \in B(S) \cap B(T)$ and $z \in C$, it follows that for any $(k, l), (i, j) \in D$ with $(k, l) \leq (i, j)$,

$$\phi(S^iT^jx, RS^iT^jx) \leq \phi(S^iT^jx, RS^kT^lx)$$
Hence the net \(\phi(S^kT^lx, RS^kT^lx) \) is nonincreasing. Putting \(u = RS^kT^lx \) and \(v = S^jx \) with \((k,l) \leq (i,j)\) in (4.3), we have from Lemma 2.3 that

\[
\begin{align*}
\phi(S^kT^lx, RS^kT^lx) & \leq \phi(S^kT^lx, RS^kT^lx) \\
& \leq \phi(S^jx, RS^kT^lx) - \phi(S^jx, RS^kT^lx) \\
& \leq \phi(S^kT^lx, RS^kT^lx) - \phi(S^jx, RS^kT^lx),
\end{align*}
\]

where \(g \) is a strictly increasing, continuous and convex real-valued function with \(g(0) = 0 \). From the properties of \(g \), \(\{RS^kT^lx\} \) is a Cauchy net; see [19]. Therefore \(\{RS^kT^lx\} \) converges strongly to a point \(q \in B(S) \cap B(T) \). Next, consider a fixed \(x \in C \) and an arbitrary subsequence \(\{S_nx\} \) of \(\{S_nx\} \) which converges weakly to a point \(v \). From the proof of Lemma 4.1, we know that \(v \in A(S) \cap A(T) = B(S) \cap B(T) \).

Rewriting the characterization of the retraction \(R \), we have that for any \(u \in B(S) \cap B(T) \),

\[
0 \leq \left(S^kT^lx - RS^kT^lx, JRS^kT^lx - Ju \right)
\]

and hence

\[
\begin{align*}
\langle S^kT^lx - RS^kT^lx, Ju - Jq \rangle & \leq \langle S^kT^lx - RS^kT^lx, JRS^kT^lx - Jq \rangle \\
& \leq \|S^kT^lx - RS^kT^lx\| \cdot \|JRS^kT^lx - Jq\| \\
& \leq K \|JRS^kT^lx - Jq\|,
\end{align*}
\]

where \(K \) is an upper bound for \(\|S^kT^lx - RS^kT^lx\| \). Summing up these inequalities for \(k = 0, 1, \ldots, n \) and \(l = 0, 1, \ldots, n \) and dividing by \((n + 1)^2\), we arrive to

\[
\begin{align*}
\left(S_nx - \frac{1}{(n + 1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} RS^kT^lx, Ju - Jq \right) & \leq K \frac{1}{(n + 1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} \|JRS^kT^lx - Jq\|,
\end{align*}
\]

where \(S_nx = \frac{1}{(n + 1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} S^kT^lx \). Letting \(n_i \to \infty \) and remembering that \(J \) is continuous, we get

\[
\langle v - q, Ju - Jq \rangle \leq 0.
\]

This holds for any \(u \in B(S) \cap B(T) \). Therefore \(Rv = q \). But because \(v \in B(S) \cap B(T) \), we have \(v = q \). Thus the sequence \(\{S_nx\} \) converges weakly to the point \(q \in A(S) \cap A(T) \).

Using Theorem 4.4, we obtain the following theorems.

Theorem 4.5. Let \(E \) be a uniformly convex Banach space with a Fréchet differentiable norm. Let \(S, T : E \to E \) be commutative \((\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \delta_1, \delta_2)\) and \((\alpha'_1, \alpha'_2, \beta'_1, \beta'_2, \gamma'_1, \gamma'_2, \delta'_1, \delta'_2)\)-generalized nonspraying mappings such that \(\alpha_1 - \beta_1 = 0 \), \(\gamma_1 \leq \delta_1 \), \(\gamma_2 \leq \delta_2 \), \(\alpha_2 > \beta_2 \) and \(\alpha'_1 - \beta'_1 = 0 \), \(\gamma'_1 \leq \delta'_1 \), \(\gamma'_2 \leq \delta'_2 \), \(\alpha'_2 > \beta'_2 \), respectively.
Assume that \(\{S^k T^l z : k, l \in \mathbb{N} \cup \{0\}\} \) for some \(z \in C \) is bounded. Let \(R \) be the sunny generalized nonexpansive retraction of \(E \) onto \(F(S) \cap F(T) \). Then, for any \(x \in E \),

\[
S_n x = \frac{1}{(n + 1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} S^k T^l x
\]

converges weakly to an element \(q \) of \(F(S) \cap F(T) \), where \(q = \lim_{(k,l) \in D} R S^k T^l x \).

Proof. Since \(\{S^k T^l z : k, l \in \mathbb{N} \cup \{0\}\} \) for some \(z \in C \) is bounded, we have that \(A(S) \cap A(T) = F(S) \cap F(T) \) is nonempty. We also know that \(\alpha_2 > \beta_2 \) together with \(\alpha_1 - \beta_1 = 0, \gamma_1 \leq \delta_1 \) and \(\gamma_2 \leq \delta_2 \) implies that

\[
\phi(Sx, u) \leq \phi(x, u)
\]

for all \(x \in E \) and \(u \in F(S) \). Similarly, \(\alpha'_2 > \beta'_2 \) together with \(\alpha'_1 - \beta'_1 = 0, \gamma'_1 \leq \delta'_1 \) and \(\gamma'_2 \leq \delta'_2 \) implies that

\[
\phi(Tx, v) \leq \phi(x, v)
\]

for all \(x \in E \) and \(v \in F(T) \). Thus, we have that \(F(S) = B(S) \) and \(F(T) = B(T) \). Therefore, we have the desired result from Theorem 4.4.

Theorem 4.6 ([6]). Let \(H \) be a Hilbert space and let \(C \) be a nonempty subset of \(H \). Let \(S \) and \(T \) be commutative 2-generalized hybrid mappings of \(C \) into itself such that \(\{S^k T^l z : k, l \in \mathbb{N} \cup \{0\}\} \) for some \(z \in C \) is bounded. Let \(P \) be the metric projection of \(H \) onto \(A(S) \cap A(T) \). Then, for any \(x \in C \),

\[
S_n x = \frac{1}{(n + 1)^2} \sum_{k=0}^{n} \sum_{l=0}^{n} S^k T^l x
\]

converges weakly to an element \(q \) of \(A(S) \cap A(T) \), where \(q = \lim_{(k,l) \in D} P S^k T^l x \). In particular, if \(C \) is closed and convex, \(\{S_n x\} \) converges weakly to an element \(q \) of \(F(S) \cap F(T) \).

Proof. We have from Theorem 3.2 that \(A(S) \cap A(T) \) is nonempty. We also have that \(A(S) = B(S) \) and \(A(T) = B(T) \). Since \(A(S) \cap A(T) \) is a nonempty, closed and convex subset of \(H \), there exists the metric projection of \(H \) onto \(A(S) \cap A(T) \). In a Hilbert space, the metric projection of \(H \) onto \(A(S) \cap A(T) \) is equivalent to the sunny generalized nonexpansive retraction of \(H \) onto \(A(S) \cap A(T) \). On the other hand, commutative 2-generalized hybrid mappings \(S, T : C \to C \) are commutative 2-generalized nonspreading mappings. So, we have the desired result from Theorem 4.6. Furthermore, if \(C \) is closed and convex, we have that \(q \in F(S) \cap F(T) \) and then \(\{S_n x\} \) converges weakly to \(q \in F(S) \cap F(T) \).

Remark We do not know whether a mean convergence theorem of Baillon’s type for nonspreading mappings in a Banach space holds or not.
Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research No. 15K04906 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant MOST 105-2115-M-037-001 and the grant MOST 105-2115-M-039-002-MY3, respectively.

REFERENCES

