[1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, NY, USA, 1993.
[2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999.
[3] G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
[4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, 204, 2006.
[5] K. S. Miller, B. Ross, Fractional Difference Calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, Japan, May (1988), 139-152; Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989.
[6] T. Abdeljawad, F. M. Atici, On the Definitions of Nabla Fractional Operators,Abstr. Appl. Anal., Volume 2012 (2012), Article ID 406757, 13 pages.
[7] H. L. Gray, N. F. Zhang, On a New Definition of the Fractional Difference, Math. Comput., 50(182) (1988), 513-529.
[8] F. M. Atıcı, P. W. Eloe, Discrete Fractional Calculus with the Nabla Operator, Electron. J. Qual. Theory Differ. Equ., No.3 (2009), 1-12.
[9] T. Abdeljawad, On Riemann and Caputo Fractional Differences, Comput. Math. Appl., 62 (2011), 1602-1611.
[10] T. Abdeljawad, D. Baleanu, Fractional Differences and Integration by Parts, J. Comput. Anal. Appl., 13 (2011), 574-582.
[11] F. M. Atıcı, P. W. Eloe, A Transform Method in Discrete Fractional Calculus, Int. J. Difference Equ., 2(2) (2007), 165-176.
[12] F. M. Atıcı, P. W. Eloe, Initial Value Problems in Discrete Fractional Calculus, Proc. Amer. Math. Soc., 137(3) (2009), 981-989.
[13] F. M. Atıcı, P. W. Eloe, Linear Systems of Fractional Nabla Difference Equations,Rocky Mountain J. Math., 41(2) (2011), 353-370.
[14] C. Goodrich, Existence of a Positive Solution to a Class of Fractional Differential Equations, Appl. Math. Lett., 23 (2010), 1050-1055.
[15] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Discrete-time Fractional Variational Problems, Signal Processing, 91(3) (2011), 513-524.
[16] G. A. Anastassiou, Nabla Discrete Fractional Calculus and Nabla Inequalities, Math. Comput. Model., 51(5-6) (2010), 562-571.
[17] J. Hein, Z. McCarthy, N. Gaswick, B. McKain, K. Speer, Laplace Transforms for the Nabla Difference Operator, PanAmer. Math. J., 21(3) (2011), 79-97.
[18] J. Alzabut, T. Abdeljawad, D. Baleanu, Nonlinear Delay Fractional Difference Equations with Applications on Discrete Fractional Lotka-Volterra Competition Model, J. Comput. Anal. Appl, 25(5) (2018), 889-898 .
[19] J. Alzabut, T. Abdeljawad, H. Alrabaiah, Oscillation Criteria for Forced and Damped Nabla Fractional Difference Equations, J. Comput. Anal. Appl, 24(8) (2018), 1387-1394 .
[20] B. Abdalla, K. Abodayeh, T. Abdeljawad, J. Alzabut, New Oscillation Criteria for Forced Nonlinear Fractional Difference Equations, Vietnam J. Math., 45(4) (2017), 609-618.
[21] R. Mert, L. Erbe, T. Abdeljawad, A Variational Approach of Sturm-Liouville Problem in Fractional Difference Calculus, Dynam. Systems Appl, 27(1) (2018), 137-148.
[22] C. Goodrich, Allan C. Peterson, Discrete Fractional Calculus, Springer, 2015.
[23] T. Abdeljawad, On Delta and Nabla Caputo Fractional Differences and Dual Identities,Discr. Dynam. Nat. Soc., 2013 (2013), Article ID 406910, 12 pages.
[24] T. Abdeljawad, Dual Identities in Fractional Difference Calculus within Riemann, Adv. Differ. Equ., 2013(36) (2013), 16 pages.
[25] T. Abdeljawad, D. Baleanu, Monotonicity Results for Fractional Difference Operators with Discrete Exponential Kernels, Adv. Differ. Equ., 2017(78) (2017), 9 pages.
[26] T. Abdeljawad, D. Baleanu, On Fractional Derivatives with Exponential Kernel and Their Discrete Versions, Rep. Math. Phys., 80(1) (2017), 11-27.
[27] T. Abdeljawad, D. Baleanu, Monotonicity Analysis of a Nabla Discrete Fractional Operator with Discrete Mittag-Leffler Kernel, Chaos Solitons Fractals, (2017).
[28] T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler Kernel Type Fractional Difference Initial Value Problems and Gronwall’s Inequality, J. Comput. Appl. Math., In Press, Corrected proof, doi.org/10.1016/j.cam2017.10.021.
[29] T. Abdeljawad, Q. M. Al-Mdallal, M. A. Hajji, Arbitrary Order Fractional Difference Operators with Discrete Exponential Kernels and Applications, Discrete Dyn. Nat. Soc., 2017 (2017), Article ID 4149320, 8 pages.
[30] T. Abdeljawad, D. Baleanu, Discrete Fractional Differences with Nonsingular Discrete Mittag-Leffler Kernels, Adv. Differ. Equ., 2016(232) (2016), 18 pages.
[31] W. G. Kelley, A. C. Peterson, The Theory of Differential Equations, Second Edition, Springer, New York, 2010.
[32] A. Brackins, Boundary Value Problems Of Nabla Fractional Difference Equations, Ph.D. Thesis, University of Nebraska, 2014.