REFERENCES
[1] R.M. May, Biological population with non-overlapping generations: stable point, stable cycle and chaos, Science., 186 (1974), 645-647.
[2] R.M. May, Simple mathematical models with very complicated dynamics, Nature., 261 (1974), 645-647.
[3] R.M. May, Limit cycles in predator-prey communities, Science., 177 (1972), 900-902.
[4] J.R. Beddington, C.A. Free, J.H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature., 255 (1975), 58-60.
[5] V. Kaitala, M. Heino, Complex non-unique dynamics in simple ecological interactions, Proc R. Soc Lond B., 263 (1996), 1011-1015.
[6] S.Y. Tang, L.S. Chen, Chaos in functional response host-parasitoid ecosystem models, Chaos Solitons and Fractals., 13 (2002), 875-884.
[7] C.L. Xu, S. Mark, Boyce, Dynamic complexities in a mutual interference host-parasitoid model, Chaos Solitons and Fractals., 13 (2005), 175-182.
[8] V Clamer, A Pugliese, D Liessi, et al., Host coexistence in a model for two host-one parasitoid interactions, Journal of Mathematical Biology., 75(2) (2017), 419.
[9] X Liu, Y Chu, Y Liu. Bifurcation and chaos in a host-parasitoid model with a lower bound for the host, Advances in Difference Equations, 2018(1) (2018), 31.
[10] Q Din, Global Stability of Beddington Model, Qualitative Theory of Dynamical Systems, 16(2) (2016), 1-25.
[11] Q Din, Qualitative analysis and chaos control in a density-dependent hostCparasitoid system, International Journal of Dynamics and Control, 3 (2017), 1-21.
[12] P.A.P. Moran, Some remarks on animal population dynamics, Biometrics., 6 (1950), 250-258.
[13] W.E. Ricker, Stock and recruitment, J. Fish Res Board Can., 11 (1954), 559-623.
[14] R.M. May, Host-parasitoid system in patchy environments: a phenomenological model, J. Anim. Ecol., 47 (1978), 833-843.
[15] A.J. Nicholson, V.A. Bailey, The balance of animal populations, Part I Proc Zool Soc, London., (1935), 551-598.
[16] V. Kaitala, J. Ylikarjula, M. Heino, Dynamic complexities in host-parasitoid interaction, J. Theor. Biol., 197 (1999), 331-341.
[17] C. Grebogi, E. Ott, J.A. Yorke, Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation, Phys. Rev. Lett., 50 (1983), 935-938.
[18] J. Testa, G.A. Held, Study of a one-dimensional map with multiple basins, Phys. Rev. A., 28 (1983), 3085-3089.
[19] H.O. Peitgen, H. Jrgens, D. Saupe, Chaos and fractals, New frontier of science, SpringerVerlag, New York., 1992.
[20] R.C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers, Oxford University Press, New York., 1994.
[21] A. Hastings, K. Higgins, Persistence of transients in spatially structured ecological models, Science., 263 (1994), 1133-1136.
[22] W.W. Murdoch, A. Oaten, Predation and population stability, Adv. Ecol. Res., 9 (1975), 1?25.
[23] J.C. Koella, M. Doebeli, Population dynamics and the evolution of virulence in epidemiological models with discrete host generations, J. Theor. Biol., 198 (1999), 461-475.
[24] H.I.J. McCallum, Effects of immigration on chaotic population dynamicstheor, Biol., 154 (1992), 277-284.
[25] M.P. Hassell, J.H. Lawton, R.M. May, Patterns of dynamical behaviour in single-species populations, J. anim. Ecol., 45 (1976), 471-486.
[26] T, S, Jr. Bellows, The descriptive properties of some models for density dependence, J. Anim. Ecol., 50 (1981), 139-156.
[27] S.W. Pacala, J.A. Silander, Neighborhood Models of Plant Population Dynamics, I. Single-Species Models of Annuals, Am. Nat., 125 (1985), 385-411.
[28] L. Altenberg, Chaos from Linear Frequency-Dependent Selection, Am. Nat., (1991), 138-151.
[29] M. Kot, G.S. Sayler, T.W. Schultz, Complex dynamics in a model microbial system, Bull. Math. Biol., 54 (1992), 619-648.
[30] M.R. Guevara, L. Glass, A. Shrier, Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science., 214 (1981), 1350- 1353.
[31] R.M. May, R.M. Anderson, Epidemiology and genetics in the coevolution of parasites and hosts, Proc. R. Soc. B., 219 (1983), 281-313.
[32] E. Knobloch, N.O. Weiss, Bifurcations in a model of magnetoconvection, Physica. 9D., (1983), 379-407.
[33] G. Contopoulos, Inverse Feigenbaum sequences in Hamiltonian systems, Lett Nuovo Cimento., 37 (1983), 149-153.
[34] R. King, J.D. Barchas, B.A. Huberman, Chaotic Behavior in Dopamine Neurodynamics, Proc Natn Acad Sci USA., 81 (1984), 1244-1247.
[35] H.L. Swinney, Observations of Order and Chaos in Nonlinear Systems, Physica., (1983), 3-15.
[36] K. Coffman, W.D. McCormick, H.L. Swinney, Multiplicity in a Chemical Reaction with One-Dimensional Dynamics, Phys. Rev. Lett., 56 (1986), 999-1002.
[37] W.M. Schaffer, Perceiving order in the chaos of nature, In: Evolution of life histories of mammals, Boyce MS, New Haven: Yale University Press, 1988, 313-350.
[38] A. Hastings, Complex interactions between dispersal and dynamics: lessons from coupled logistic equations, Ecology., 74 (1993), 1362-1372.
[39] C.L Xu, Z.Z. Li, Effect of diffusion and spatially varying predation risk on the dynamics and equilibrium density of a predator-prey system, J. Theor. Biol., 219 (2002), 73-82.
[40] M. Inoue, H. Kamifukumoto, Scenarios leading to chaos in a forced Lotka-Volterra model, Prog. Theor. Phys., 71 (1984), 930-937.
[41] S. Rinaldi, S. Muratori, YuA. Kuznetsov, Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., 55 (1993), 15-35.
[42] G.C.W. Sabin, D. Summer, Chaos in a periodically forced predator-prey ecosystem model, Math. Biosci., 113 (1993), 91-113.
[43] S. Gakkhar, R.K. Naji, Chaos in seasonally perturbed ratio-dependent prey-predator system, Chaos Solitons and Fractals., 15 (2003), 107-118.
[44] K. McCann, A. Hastings, S. Harrison, W. Wilson, Population outbreaks in a discrete world, Theor. Popul. Biol., 57 (2000), 97-108.
[45] Z.Z. Li, M. Gao, H. Cang, H. Xiao-zhuo, S. Honghua, Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecol. Model., 185 (2005), 245-254.
[46] I. Hanski, P. Turchin, E. Korpimki, H. Henttonen, Population oscillations of boreal rodents: regulation by mustelid predators leadto chaos, Nature., 364 (1993), 232-235.
[47] G. Sugihara, R.M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature., 344 (1990), 734-741.
[48] L. Stone, Coloured noise or low-dimensional chaos. Proc. R. Soc. Lond B., 250 (1992), 77-81.