Publication TypeJournal Article
Year of Publication2019
JournalDynamic Systems and Applications
Start Page1
Date Published09/2018
AMS Subject Classification34C, 65C, 92B

In this paper, computer simulation is used to study the influence of clumping effect on the dynamic complexities of a discrete-time host-parasitoid model. We report here parasitoid aggregation may be a strong stabilizing or destabilizing factor. Using computer simulation, many forms of complex dynamic are observed, including Hopf bifurcation reversal, period-halving, attractor crises, chaotic bands with narrow or wide periodic windows, intermittent chaos, and supertransient behavior. Several types of attractors, e.g. point equilibrium vs. chaotic, periodic vs.
quasiperiodic and quasiperiodic vs. chaotic attractors, may coexist in the same mapping. This non-uniqueness also indicates that the bifurcation diagrams, or the routes to chaos, depend on initial conditions and are therefore non-unique. The basins of attraction, defining the initial conditions leading to a certain attractor, may be frac tal set. The fractal property observed is the pattern of self-similarity. The numerical results indicate that computer simulation is a useful method of investigating complex dynamic systems. We also conclude that non-unique dynamic, associated with the extremely complex structure of the basin boundaries, can have a profound effect on our understanding of the dynamical processes of nature.

Refereed DesignationRefereed
Full Text


[1] R.M. May, Biological population with non-overlapping generations: stable point, stable cycle and chaos, Science., 186 (1974), 645-647.
[2] R.M. May, Simple mathematical models with very complicated dynamics, Nature., 261 (1974), 645-647.
[3] R.M. May, Limit cycles in predator-prey communities, Science., 177 (1972), 900-902.
[4] J.R. Beddington, C.A. Free, J.H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature., 255 (1975), 58-60.
[5] V. Kaitala, M. Heino, Complex non-unique dynamics in simple ecological interactions, Proc R. Soc Lond B., 263 (1996), 1011-1015.
[6] S.Y. Tang, L.S. Chen, Chaos in functional response host-parasitoid ecosystem models, Chaos Solitons and Fractals., 13 (2002), 875-884.
[7] C.L. Xu, S. Mark, Boyce, Dynamic complexities in a mutual interference host-parasitoid model, Chaos Solitons and Fractals., 13 (2005), 175-182.
[8] V Clamer, A Pugliese, D Liessi, et al., Host coexistence in a model for two host-one parasitoid interactions, Journal of Mathematical Biology., 75(2) (2017), 419.
[9] X Liu, Y Chu, Y Liu. Bifurcation and chaos in a host-parasitoid model with a lower bound for the host, Advances in Difference Equations, 2018(1) (2018), 31.
[10] Q Din, Global Stability of Beddington Model, Qualitative Theory of Dynamical Systems, 16(2) (2016), 1-25.
[11] Q Din, Qualitative analysis and chaos control in a density-dependent hostCparasitoid system, International Journal of Dynamics and Control, 3 (2017), 1-21.
[12] P.A.P. Moran, Some remarks on animal population dynamics, Biometrics., 6 (1950), 250-258.
[13] W.E. Ricker, Stock and recruitment, J. Fish Res Board Can., 11 (1954), 559-623.
[14] R.M. May, Host-parasitoid system in patchy environments: a phenomenological model, J. Anim. Ecol., 47 (1978), 833-843.
[15] A.J. Nicholson, V.A. Bailey, The balance of animal populations, Part I Proc Zool Soc, London., (1935), 551-598.
[16] V. Kaitala, J. Ylikarjula, M. Heino, Dynamic complexities in host-parasitoid interaction, J. Theor. Biol., 197 (1999), 331-341.
[17] C. Grebogi, E. Ott, J.A. Yorke, Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation, Phys. Rev. Lett., 50 (1983), 935-938. 
[18] J. Testa, G.A. Held, Study of a one-dimensional map with multiple basins, Phys. Rev. A., 28 (1983), 3085-3089.
[19] H.O. Peitgen, H. Jrgens, D. Saupe, Chaos and fractals, New frontier of science, SpringerVerlag, New York., 1992.
[20] R.C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers, Oxford University Press, New York., 1994.
[21] A. Hastings, K. Higgins, Persistence of transients in spatially structured ecological models, Science., 263 (1994), 1133-1136.
[22] W.W. Murdoch, A. Oaten, Predation and population stability, Adv. Ecol. Res., 9 (1975), 1?25.
[23] J.C. Koella, M. Doebeli, Population dynamics and the evolution of virulence in epidemiological models with discrete host generations, J. Theor. Biol., 198 (1999), 461-475.
[24] H.I.J. McCallum, Effects of immigration on chaotic population dynamicstheor, Biol., 154 (1992), 277-284.
[25] M.P. Hassell, J.H. Lawton, R.M. May, Patterns of dynamical behaviour in single-species populations, J. anim. Ecol., 45 (1976), 471-486.
[26] T, S, Jr. Bellows, The descriptive properties of some models for density dependence, J. Anim. Ecol., 50 (1981), 139-156.
[27] S.W. Pacala, J.A. Silander, Neighborhood Models of Plant Population Dynamics, I. Single-Species Models of Annuals, Am. Nat., 125 (1985), 385-411.
[28] L. Altenberg, Chaos from Linear Frequency-Dependent Selection, Am. Nat., (1991), 138-151.
[29] M. Kot, G.S. Sayler, T.W. Schultz, Complex dynamics in a model microbial system, Bull. Math. Biol., 54 (1992), 619-648.
[30] M.R. Guevara, L. Glass, A. Shrier, Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science., 214 (1981), 1350- 1353.
[31] R.M. May, R.M. Anderson, Epidemiology and genetics in the coevolution of parasites and hosts, Proc. R. Soc. B., 219 (1983), 281-313.
[32] E. Knobloch, N.O. Weiss, Bifurcations in a model of magnetoconvection, Physica. 9D., (1983), 379-407.
[33] G. Contopoulos, Inverse Feigenbaum sequences in Hamiltonian systems, Lett Nuovo Cimento., 37 (1983), 149-153.
[34] R. King, J.D. Barchas, B.A. Huberman, Chaotic Behavior in Dopamine Neurodynamics, Proc Natn Acad Sci USA., 81 (1984), 1244-1247.
[35] H.L. Swinney, Observations of Order and Chaos in Nonlinear Systems, Physica., (1983), 3-15.
[36] K. Coffman, W.D. McCormick, H.L. Swinney, Multiplicity in a Chemical Reaction with One-Dimensional Dynamics, Phys. Rev. Lett., 56 (1986), 999-1002.
[37] W.M. Schaffer, Perceiving order in the chaos of nature, In: Evolution of life histories of mammals, Boyce MS, New Haven: Yale University Press, 1988, 313-350.
[38] A. Hastings, Complex interactions between dispersal and dynamics: lessons from coupled logistic equations, Ecology., 74 (1993), 1362-1372.
[39] C.L Xu, Z.Z. Li, Effect of diffusion and spatially varying predation risk on the dynamics and equilibrium density of a predator-prey system, J. Theor. Biol., 219 (2002), 73-82.
[40] M. Inoue, H. Kamifukumoto, Scenarios leading to chaos in a forced Lotka-Volterra model, Prog. Theor. Phys., 71 (1984), 930-937.
[41] S. Rinaldi, S. Muratori, YuA. Kuznetsov, Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., 55 (1993), 15-35.
[42] G.C.W. Sabin, D. Summer, Chaos in a periodically forced predator-prey ecosystem model, Math. Biosci., 113 (1993), 91-113.
[43] S. Gakkhar, R.K. Naji, Chaos in seasonally perturbed ratio-dependent prey-predator system, Chaos Solitons and Fractals., 15 (2003), 107-118.
[44] K. McCann, A. Hastings, S. Harrison, W. Wilson, Population outbreaks in a discrete world, Theor. Popul. Biol., 57 (2000), 97-108.
[45] Z.Z. Li, M. Gao, H. Cang, H. Xiao-zhuo, S. Honghua, Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecol. Model., 185 (2005), 245-254.
[46] I. Hanski, P. Turchin, E. Korpimki, H. Henttonen, Population oscillations of boreal rodents: regulation by mustelid predators leadto chaos, Nature., 364 (1993), 232-235.
[47] G. Sugihara, R.M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature., 344 (1990), 734-741.
[48] L. Stone, Coloured noise or low-dimensional chaos. Proc. R. Soc. Lond B., 250 (1992), 77-81.