[1] G. Adomian, A review of the decomposition method in applied mathematics, Journal Mathematics Anal App., 135 (1988), 501-544.

[2] G. Adomian, Solving Frontier Problems of Physics. The Decompositon Method, Kluver Academic Publishers, Boston, 1994.

[3] T. Allahvirnaloo, S. Abbasbandy, The Adomian decompositon method applied to fuzzy system of Fredholm integral equations of the second kind, Int. J. Uncertainty Fuzziness Knowl-Based Systems, 10 (2006), 101-110.

[4] E. Babolian, H. S. Goghary ans S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomain method, Applied Math. Comput., 161 (2005), 733-744.

[5] S.S. Behzadi, Solving fuzzy nonlinear Volterra-Fredholm integral equations by using homotopy analysis and Adomian decomposition methods, International of Fuzzy Set Valued Analysis, 35 (2011), 13 pp.

[6] B. Bede Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, Berlin, 2013.

[7] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy numbervalued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.

[8] B. Bede, S. G. Gal, Quadrature rules for integrals of fuzzy-number valued functions, Fuzzy Sets and Systems, 145 (2004), 359-380.

[9] Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos, Solitons and Fractals, 38 (2008), 112-119.

[10] D. Dubois, and H. Prade, Towards fuzzy differential calculus I,II,III, Fuzzy Sets and Systems, 8 (1982), 225-233.

[11] I.L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Journal Applied Mathematics and Computing, 21 (2008), 327376.

[12] S. Enkov, A. Georgieva, R. Nikolla, Numerical solution of nonlinear Hammerstein fuzzy functional integral equations, AIP Conference Proceedings, 1789 (2016), 030006-1-030006-8.

[13] S. Enkov, A. Georgieva, Numerical solution of two-dimensional nonlinear Hammerstein fuzzy functional integral equations based on fuzzy Haar wavelets, AIP Conference Proceedings, 1910 (2017), 050004-1-050004-8.

[14] S. Enkov, A. Georgieva, A. Pavlova, Quadrature rules and iterative numerical method for two-dimensional nonlinear Fredholm fuzzy integral equations, Communications in Applied Analysis, 21 (2017), 479-498.

[15] M. Friedman, M. Ming, A. Kandel, Numerical solution of fuzzy differential and integral equations, Fuzzy Sets and System, 106 (1999), 35-48.

[16] S.G. Gal, Approximation theory in fuzzy setting, In: Anastassiou GA (ed), Handbook of Analytic-Computational Methods in Applied Mathematics, Chapter 13, Chapman Hall/CRC Press, Boca Raton, 2000, 617-666.

[17] A. Georgieva, A. Alidema, Convergence of homotopy perturbation method for solving of two-dimensional fuzzy Volterra functional integral equations, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, 793 (2019), 129-145.

[18] A. Georgieva, I. Naydenova, Numerical solution of nonlinear Urisohn-Volterra fuzzy functional integral equations, AIP Conference Proceedings, 1910 (2017), 050010-1-050010-8.

[19] A. Georgieva, A. Pavlova, S. Enkov, Iterative method for numerical solution of two-dimensional nonlinear Urysohn fuzzy integral equations, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence (2019), 793147-161.

[20] A. Georgieva, A. Pavlova, I. Naydenova, Error estimate in the iterative numerical method for two-dimensional nonlinear Hammerstein-Fredholm fuzzy functional integral equations, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, 728 (2018), 41-45.

[21] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.

[22] Z. Gong, C. Wu, Bounded variation, absolute continuity and absolute integrability for fuzzy-number-valued functions, Fuzzy Sets and Systems, 129 (2002), 83-94.

[23] A. Jafarian, N.S. Measoomy, S. Tavan, A numerical scheme to solve fuzzy linear Volterra integral equations system, J. Appl. Math. (2012): article ID 216923.

[24] S.M. Sadatrasoul, R. Ezzati, Quadrature rules and iterative method for numerical solution of two-dimensional fuzzy integral equations, Abstract and Applied Analysis (2014), article ID 413570.

[25] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.

[26] Y. Shao, H. Zhang, Fuzzy integral equations and strong fuzzy Henstock integrals, Abstract and Applied Analysis (2014), Article ID 932696:1-8.

[27] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120 (2001), 523-532.

[28] C. Wu, C. Wu, The supremum and infimum of these to fuzzy-numbers and its applications, J. Math. Anal. Appl., 210 (1997), 499-511