SOLVING TWO-DIMENSIONAL NONLINEAR VOLTERRA-FREDHOLM FUZZY INTEGRAL EQUATIONS BY USING ADOMIAN DECOMPOSITION METHOD

TitleSOLVING TWO-DIMENSIONAL NONLINEAR VOLTERRA-FREDHOLM FUZZY INTEGRAL EQUATIONS BY USING ADOMIAN DECOMPOSITION METHOD
Publication TypeJournal Article
Year of Publication2018
AuthorsGEORGIEVA ATANASKA
JournalDynamic Systems and Applications
Volume27
Issue4
Start Page819
Pagination18
Date Published11/2018
ISSN1056-2176
AMS Subject Classification45B05, 45G10, 65R20
Abstract

In this paper, we propose Adomian decomposition method (ADM) to approximate the solution of two-dimensional nonlinear Volterra-Fredholm fuzzy integral equation (2D-NVFFIE). We convert this integral equation to a nonlinear system of Volterra-Fredholm integral equations in crisp case. The aim of this paper is to find an approximate solution of this system using ADM. Hence, we obtain an approximation for the fuzzy solution of the nonlinear Volterra-Fredholm fuzzy integral equation. A numerical example is given to demonstrate the validity and applicability of the proposed technique.

PDFhttps://acadsol.eu/dsa/articles/27/4/9.pdf
DOI10.12732/dsa.v27i4.9
Refereed DesignationRefereed
Full Text

[1] G. Adomian, A review of the decomposition method in applied mathematics, Journal Mathematics Anal App., 135 (1988), 501-544.
[2] G. Adomian, Solving Frontier Problems of Physics. The Decompositon Method, Kluver Academic Publishers, Boston, 1994.
[3] T. Allahvirnaloo, S. Abbasbandy, The Adomian decompositon method applied to fuzzy system of Fredholm integral equations of the second kind, Int. J. Uncertainty Fuzziness Knowl-Based Systems, 10 (2006), 101-110.
[4] E. Babolian, H. S. Goghary ans S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomain method, Applied Math. Comput., 161 (2005), 733-744.
[5] S.S. Behzadi, Solving fuzzy nonlinear Volterra-Fredholm integral equations by using homotopy analysis and Adomian decomposition methods, International of Fuzzy Set Valued Analysis, 35 (2011), 13 pp.
[6] B. Bede Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, Berlin, 2013.
[7] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy numbervalued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.
[8] B. Bede, S. G. Gal, Quadrature rules for integrals of fuzzy-number valued functions, Fuzzy Sets and Systems, 145 (2004), 359-380.
[9] Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos, Solitons and Fractals, 38 (2008), 112-119.
[10] D. Dubois, and H. Prade, Towards fuzzy differential calculus I,II,III, Fuzzy Sets and Systems, 8 (1982), 225-233.
[11] I.L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Journal Applied Mathematics and Computing, 21 (2008), 327376.
[12] S. Enkov, A. Georgieva, R. Nikolla, Numerical solution of nonlinear Hammerstein fuzzy functional integral equations, AIP Conference Proceedings, 1789 (2016), 030006-1-030006-8.
[13] S. Enkov, A. Georgieva, Numerical solution of two-dimensional nonlinear Hammerstein fuzzy functional integral equations based on fuzzy Haar wavelets, AIP Conference Proceedings, 1910 (2017), 050004-1-050004-8.
[14] S. Enkov, A. Georgieva, A. Pavlova, Quadrature rules and iterative numerical method for two-dimensional nonlinear Fredholm fuzzy integral equations, Communications in Applied Analysis, 21 (2017), 479-498.
[15] M. Friedman, M. Ming, A. Kandel, Numerical solution of fuzzy differential and integral equations, Fuzzy Sets and System, 106 (1999), 35-48.
[16] S.G. Gal, Approximation theory in fuzzy setting, In: Anastassiou GA (ed), Handbook of Analytic-Computational Methods in Applied Mathematics, Chapter 13, Chapman Hall/CRC Press, Boca Raton, 2000, 617-666.
[17] A. Georgieva, A. Alidema, Convergence of homotopy perturbation method for solving of two-dimensional fuzzy Volterra functional integral equations, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, 793 (2019), 129-145.
[18] A. Georgieva, I. Naydenova, Numerical solution of nonlinear Urisohn-Volterra fuzzy functional integral equations, AIP Conference Proceedings, 1910 (2017), 050010-1-050010-8.
[19] A. Georgieva, A. Pavlova, S. Enkov, Iterative method for numerical solution of two-dimensional nonlinear Urysohn fuzzy integral equations, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence (2019), 793147-161.
[20] A. Georgieva, A. Pavlova, I. Naydenova, Error estimate in the iterative numerical method for two-dimensional nonlinear Hammerstein-Fredholm fuzzy functional integral equations, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, 728 (2018), 41-45.
[21] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.
[22] Z. Gong, C. Wu, Bounded variation, absolute continuity and absolute integrability for fuzzy-number-valued functions, Fuzzy Sets and Systems, 129 (2002), 83-94.
[23] A. Jafarian, N.S. Measoomy, S. Tavan, A numerical scheme to solve fuzzy linear Volterra integral equations system, J. Appl. Math. (2012): article ID 216923.
[24] S.M. Sadatrasoul, R. Ezzati, Quadrature rules and iterative method for numerical solution of two-dimensional fuzzy integral equations, Abstract and Applied Analysis (2014), article ID 413570.
[25] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.
[26] Y. Shao, H. Zhang, Fuzzy integral equations and strong fuzzy Henstock integrals, Abstract and Applied Analysis (2014), Article ID 932696:1-8.
[27] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120 (2001), 523-532.
[28] C. Wu, C. Wu, The supremum and infimum of these to fuzzy-numbers and its applications, J. Math. Anal. Appl., 210 (1997), 499-511