REFERENCES
[1] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc., 41 (1990), 421-434.
[2] G. Fournier and L. Gorniewicz, The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces, Fundamenta Mathematicae, 92 (1976), 213-222.
[3] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publishers, Dordrecht, 1999.
[4] L. Gorniewicz and A. Granas, Some general theorems in coincidence theory, J. Math. Pures et Appl., 60 (1981), 361-373.
[5] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[6] D. O’Regan, Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed point Theory and Applications, 2004 (2004), 13-20.
[7] D. O’Regan, Fixed point theory in generalized approximate neighborhood extension spaces, Fixed Point Theory, 12 (2011), 155-164.
[8] D. O’Regan, Lefschetz type theorem for a class of noncompact mappings, J. Nonlinear Sci. Appl., 7 (2014), 288-295.
[9] D. O’Regan, Generalized Lefschetz fixed point theorems in extension type spaces, J. Nonlinear Sci. Appl., 8 (2015), 986-996.
[10] M. Skiba and M. Slosarski, On the generalization of absolute neighborhood retracts, Topology and its Applications, 156 (2009), 697-709.
[11] M. Slosarski, Fixed points of multivalued mappings in Hausdorff topological spaces, Nonlinear Analysis Forum, 13 (2008), 39-48.
[12] K.K. Tan and X.Z. Yuan, Random fixed point theorems and approximations in cones, Jour. Math. Anal. Appl., 185 (1994), 378-390.