GENERAL LEFSCHETZ FIXED POINT THEORY FOR MULTIVALUED MAPS

TitleGENERAL LEFSCHETZ FIXED POINT THEORY FOR MULTIVALUED MAPS
Publication TypeJournal Article
Year of Publication2018
AuthorsO’REGAN DONAL
JournalDynamic Systems and Applications
Volume27
Issue4
Start Page803
Pagination16
Date Published10/2018
ISSN1056-2176
AMS Subject Classification47H10, 54C60, 54H25, 55M20
Abstract

Some generalizations of the Lefschetz fixed point theorem are presented for admissible maps on Hausdorff topological spaces.

PDFhttps://acadsol.eu/dsa/articles/27/4/8.pdf
DOI10.12732/dsa.v27i4.8
Refereed DesignationRefereed
Full Text

REFERENCES

[1] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc., 41 (1990), 421-434.
[2] G. Fournier and L. Gorniewicz, The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces, Fundamenta Mathematicae, 92 (1976), 213-222.
[3] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publishers, Dordrecht, 1999.
[4] L. Gorniewicz and A. Granas, Some general theorems in coincidence theory, J. Math. Pures et Appl., 60 (1981), 361-373.
[5] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[6] D. O’Regan, Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed point Theory and Applications, 2004 (2004), 13-20.
[7] D. O’Regan, Fixed point theory in generalized approximate neighborhood extension spaces, Fixed Point Theory, 12 (2011), 155-164.
[8] D. O’Regan, Lefschetz type theorem for a class of noncompact mappings, J. Nonlinear Sci. Appl., 7 (2014), 288-295.
[9] D. O’Regan, Generalized Lefschetz fixed point theorems in extension type spaces, J. Nonlinear Sci. Appl., 8 (2015), 986-996.
[10] M. Skiba and M. Slosarski, On the generalization of absolute neighborhood retracts, Topology and its Applications, 156 (2009), 697-709.
[11] M. Slosarski, Fixed points of multivalued mappings in Hausdorff topological spaces, Nonlinear Analysis Forum, 13 (2008), 39-48.
[12] K.K. Tan and X.Z. Yuan, Random fixed point theorems and approximations in cones, Jour. Math. Anal. Appl., 185 (1994), 378-390.