[1] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Academic Publishers, Dordrecht, 1992.
[2] Dumitru Baleanu, Ziya Burhanettin G, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.
[3] E.F. Beckenbach, R. Bellmann, Inequalities, Springer-Verlag, New York, 1961.
[4] P.G. Chhetri, A.S. Vatsala, The Convergence of the Solution of Caputo fractional Reaction Diffusion Equation with Numerical Examples, Neural, Parallel, and Scientific Computations, vol. 25, pp. 295306, 2017.
[5] Lokenath Debnath, Recent Applications of Fractional Calculus to Science and Engineering, Hindawi Publishing Corp., 2003.
[6] Z.Denton, P.W.Ng, A.S.Vatsala, Quasilinearization Method Via Lower and Upper Solutions for Riemann-Liuoville Fractional Differential Equations, Nonlinear Dynamics and System Theory 11(3)2011,239-251. CAPUTO FRACTIONAL REACTION DIFFUSION EQUATION 849
[7] Z. Denton, A. S. Vatsala, Monotone Iterative Technique for Finite System of Nonlinear Riemann–Liouville Differential Equations, Opuscula Mathematica, 31(3):327339, (2011).
[8] S G Deo, V Lakshmikantham, V Raghavendra Textbook Of Ordinary Differential Equations, Tata McGraw-Hill Publishing Company Limited, 1997.
[9] Erdelyi, A.; Magnus,W.;Oberhettinger,F.;Tricomi,F.G. Mittag-Leffler’s Function E(z) and Related Functions; g18.1 in Higher Transcendental Functions; Krieger: New York, NY, USA, 1981; Volume 3, pp. 206-212.
[10] Glockle, W.G.; nonnenmacher, T.F. A Fractional calculus Approach to self similar protein dynamics, Biophys.J. 1995,68, 46-53.
[11] Gorenflo, R., Kilbas, A.A.,Mainardi, F., Rogosin, S.V., Mittaf-Leffler functions, Related topic and applications,Springer Monographs in Mathematics: 2014; 443 pages.
[12] Herrmann, Richard Fractional Calculus- An introduction For Physicists, World Scientific Publishing Co.Pte. Ltd., 2011.
[13] Editoe R.Hilfer, Applications of Fractional Calculas in Physics,World Scientific, Singapore, 2000.
[14] A.A.Kilbas, H.M.Srivastava and J.J.Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[15] A.Kilbas, H.M.Srivastava, J.T.Trujillo Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204, Elsevier, 2006.
[16] G.S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman publishing Inc, 1985.
[17] V. Lakshmikantham, S. Leela, and D.J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
[18] V. Lakshmikantham, A. S. Vatsala, General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations, Applied Mathematics Letters, vol. 21, no. 8, pp. 828834, 2008.
[19] V. Lakshmikantham, A. S. Vatsala, General Monotone Method For Fractional Reaction Diffusion Equations, Communications in Applied Analysis, vol. 16, pp. 165174, 2012.
[20] V. Lakshmikantham, A.S. Vatsala Generalized Quasilinearization for Nonlinear Problems, Springer-Science+Business Media, B.V. 1998.
[21] Bo Li, Wei Xie Adaptive Fractional Differential Approach and It’s Application to Medical Image Enhancement, Computers and Electrical Engineering, Elsevier, 2015. 850 P.G. CHHETRI AND A.S. VATSALA
[22] Rainey Lyons, Aghalaya S. vatsala, Ross A. Chiquet Picard’s Iterative method for Caputo Fractional Differential Equations with Numerical Results, Mathematics 2017,5,65.
[23] Abramowitz, M.; Stegun, I.A. (Eds.) Beta Function and Incomplete Beta Function; 6.2 and 6.6 in Handbook of Mathematical functions with Formulas, Graphs, and Mathematical Tables,9th printing; Courier Corporation: Mineola, NY, USA, 1972; pp. 258-263.
[24] Ma, Ruyun, Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differential Equations, vol 34, (1999).
[25] FrancescoMainardi, On Some Properties Of The Mittag-Leffler Functions E(−t), Completely Monotone for t > 0 with 0 < < 1; Discrete and Continuous Dynamical Systems Series B(DCDS-B), 2014, pp 2267-2278.
[26] F.Mainardi, The Fundamental Solutions for the Fractional Diffusion-Wave Equation, Appl. Math. Lett, 9(6), (1996),(23-28).
[27] R. Metzler, J.Klafter The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamic Approach, Phys Rep 339(1): 1-77.
[28] Keith B. Oldham, Jerome Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[29] I. Podlubny Fractional Differential Equations, Mathematics in Science and Engineering, Volume 198, Academic Press, 1999.
[30] Chen Qing-Li, Huang Guo, Zhang Xin-qiong A Fractional Differential Approach to low contrast Image Enhancement, International Journal of Knowledge and Language Processing, Volume 3, Number 2, 2012.
[31] Donna Stutson, A.S. Vatsala, A representation Solution is obtained for the One Dimensional Caputo Fractional Reaction Diffusion Equation, Proceedings of Dynamic Systems and Applications 6(2012).
[32] Tong,P.; Feng, Y.Q.; Lv,H.J. Euler’s Method for Fractional Differential Equations, WSEAS Trans. Math. 2013, 12, 1146-1153.
[33] A.S.Vatsala, Donna Stutson Generalized Monotone Method for Fractional Reaction Diffusion Equations, Communications in Applied Analysis 16 (2012), n0.2, 165-174.
[34] Yang, X.H.; Liu, Y.J. Picard Iterative process for Initial value Problems of Singular Fractional Differential equations, Adv. Differ. Equ. 2014, 1, 102. Available online: http:// www.advancesindifferenceequation.com/content/2014/1/102.