TROTTER-KATO APPROXIMATIONS OF McKEAN-VLASOV TYPE STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES

TitleTROTTER-KATO APPROXIMATIONS OF McKEAN-VLASOV TYPE STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES
Publication TypeJournal Article
Year of Publication2018
AuthorsGOVINDAN T.E.
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page565
Pagination16
Date Published2018
ISSN1056-2176
AMS Subject Classification60H15
Abstract

This paper is concerned with a semilinear McKean-Vlasov type Itˆo stochastic evolution equation in a Hilbert space. The goal here is to consider the existence and uniqueness of mild solutions, Trotter-Kato approximations of mild solutions of such equations and also to deduce the weak convergence of the corresponding induced probability measures. As an application, a classical limit theorem on the dependence of such equations on a parameter is obtained. An example on a stochastic heat equation is included at the end.

PDFhttps://acadsol.eu/dsa/articles/27/3/7.pdf
DOI10.12732/dsa.v27i3.7
Refereed DesignationRefereed
Full Text

REFERENCES
[1] N. U. Ahmed and X. Ding, A semilinear McKean-Vlasov stochastic evolution
equation in Hilbert space, Stochastic Proc. Appl., 60 (1995), 65-85.
[2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge
University Press, Cambridge (1992).
[3] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, SpringerVerlag, Berlin (1972).
[4] T. E. Govindan, Autonomous semilinear stochastic Volterra integrodifferential
equations in Hilbert spaces, Dynamic Systems Appl., 3 (1994), 51-74.
[5] T. E. Govindan and N. U. Ahmed, On Yosida approximations of McKean-Vlasov
type stochastic evolution equations, Stochastic Anal. Appl., 33 (2015), 383-398.
[6] T. E. Govindan, On Trotter-Kato approximations of semilinear stochastic evolution
equations in infinite dimensions, Statis. Probab. Letters 96 (2015), 299-306.
[7] T. E. Govindan, Trotter-Kato approximations of semilinear stochastic evolution
equations, Boletin Soc. Matemat. Mexicana 12 (2006), 109-120.
[8] T. E. Govindan, Yosida Approximations of Stochastic Differential Equations in
Infinite Dimensions and Applications, Springer, Switzerland (2016).
[9] A. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math.
Anal. Appl., 90 (1982), 12-44.
[10] D. Kannan and A. T. Bharucha-Reid, On a stochastic integrodifferential evolution
equation of Volterra type, J. Integral Eqns., 10 (1985), 351-379.
[11] H. P. McKean, A class of Markov processes associated with nonlinear parabolic
equations, Proc. N.A.S., 56 (1966), 1907-1911.
[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer-Verlag, Berlin (1983).