ON THE OBSERVABILITY AND STATE ESTIMATION IN A CLASS OF GENE-EXPRESSION SYSTEM

TitleON THE OBSERVABILITY AND STATE ESTIMATION IN A CLASS OF GENE-EXPRESSION SYSTEM
Publication TypeJournal Article
Year of Publication2018
AuthorsAGUILAR-LOPEZ RICARDO, MATA-MACHUCA JUAN
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page531
Pagination14
Date Published2018
ISSN1056-2176
AMS Subject Classification34A34, 92B05, 93B07, 93E10
Abstract

The failure of available physical sensors for the online measurement of protein concentration in cells is a key problem to understanding the transition in bio-systems. In this paper, a new state observer has been designed to estimate three protein concentrations by using a gene-expression mathematical model. Interestingly, its only input is the concentration of one messenger RNA (mRNA). Similarly by differential-algebraic observability analysis is showed that the gene-expression model is indeed observable. The observer convergence was demonstrated by analysing the estimation error dynamics. In silico experiments confirm the satisfactory performance of this new observer.

PDFhttps://acadsol.eu/dsa/articles/27/3/5.pdf
DOI10.12732/dsa.v27i3.5
Refereed DesignationRefereed
Full Text

REFERENCES
[1] M. Quach, N. Brunel, F. d’Alche-Buc, Estimating parameters and hidden variables
in non-linear state-space models based on odes for biological networks inference,
Bioinformatics, 23 (2007), 3209.
[2] A.S. Ribeiro, Stochastic and delayed stochastic models of gene expression and
regulation, Mathematical Biosciences, 223 (2010), 1.
[3] R.N. Gutenkunst, J.J. Waterfall, F.P. Casey, K.S. Brown, C.R. Myers, J.P.
Sethna, Universally sloppy parameter sensitivities in systems biology models,
Plos. Comput. Biol., 3 (2007), 1871.
[4] G. Goffaux, A. Vande Wouwer, Bioprocess state estimation: Some classical and
less classical approaches, Lect. Notes Contr. Inf., 322 (2005), 111.
[5] S. Bennett, A brief history of automatic control, IEEE Contr. Syst. Mag., 16 (1996), 17.
[6] G. Besan¸con, Nonlinear observers and applications, Springer, New York (2007).
[7] F. Cacace, A. Germani, P. Palumbo, The state observer as a tool for the estimation
of gene expression, J. Math. Anal. Appl., 391 (2012), 382.
[8] H. Nijmeijer, T.I. Fossen, New directions in nonlinear observer design, Springer,
New York (1999).
[9] G. Lillacci, P. Valigi, State observers for the estimation of mRNA and protein
dynamics, In: IEEE Life Science Systems and Applications Workshop, 2007, pp. 108.
[10] V. Ibarra-Junquera, L.A. Torres, H.C. Rosu, G. Arguello, J. Collado-Vides, Nonlinear
software sensor for monitoring genetic regulation processes with noise and
modeling errors. Phys. Rev. E, 72 (2005), 011919 1-9.
[11] H. Trinh, T. Fernando, Functional observers for dynamical systems, Springer, Berlin (2012).
[12] V.P. Zhdanov, Periodic perturbation of genetic oscillations, Chaos Solitons Fractals, 45 (2012), 577.
[13] G.R. Gavalas, Nonlinear differential equations of chemically reacting systems,
Springer, Berlin (1968).
[14] F. Viel, F. Jadot, G. Bastin, Robust feedback stabilization of chemical reactors,
IEEE Trans. Automat. Contr., 42 (1997), 473.
[15] A. Ilchmann, M.F. Weirig, Modelling of general biotechnological processes, Math.
Comp. Model. Dyn., 5 (1999), 152.
[16] J. Alvarez-Ramirez, A. Morales, PI control of continuously stirred tank reactors:
Stability and performance, Chem. Eng. Sci., 55 (2000), 5497.
[17] H.K. Khalil, Nonlinear systems, Pearson New International Edition (2013).
[18] V.P. Zhdanov, Kinetic models of gene expression including non-coding RNAs.
Phys. Rep., 500 (2011), 1.
[19] E.D. Sontag, A concept of local observability, Syst. Control Lett., 5 (1984), 41.
[20] S. Diop, M. Fliess, Nonlinear observability, identifiability, and persistent trajectories,
In: IEEE Conference on Decision and Control, 1991, pp. 714.
[21] R. Martinez-Guerra, J. De Leon-Morales, Nonlinear estimators: A differential
algebraic approach, Appl. Math. Lett., 9 (1996), 21.
[22] R. Martinez-Guerra, R. Aguilar-Lopez, A. Poznyak, A new robust sliding-mode
observer design for monitoring in chemical reactors, J. Dyn. Syst.-T Asme, 126 (2004), 473.
[23] R. Aguilar-Lopez, J. Mata-Machuca, R. Martinez-Guerra, On the observability
for a class of nonlinear (bio)chemical systems, Int. J. Chem. React. Eng., 8 (2010), A3 1-27.
[24] M.I. Neria-Gonzalez, J.C. Figueroa-Estrada, M.R. Cruz-Diaz, R. Aguilar-Lopez,
Adaptive smooth observer design for state estimation in Desulfovibrio alaskensis
6SR cultures, Rev. Mex. Ing. Quim., 10 (2011), 137.