S2γ -WPAA FUNCTIONS AND APPLICATIONS TO STOCHASTIC NEUTRAL FUNCTIONAL EQUATIONS WITH INFINITE DELAY

TitleS2γ -WPAA FUNCTIONS AND APPLICATIONS TO STOCHASTIC NEUTRAL FUNCTIONAL EQUATIONS WITH INFINITE DELAY
Publication TypeJournal Article
Year of Publication2018
AuthorsTANG CHAO, CHANG YONG-KUI
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page495
Pagination36
Date Published2018
ISSN1056-2176
AMS Subject Classification34C27, 34D20, 34F05, 60H30
Abstract

In this paper, we introduce the concept of ${ S^2_{\gamma} }$ -weighted pseudo almost automorphy. And then, we investigate some basic properties such as completeness of spaces, ergodic and composition theorems of such stochastic processes. Finally, by virtue of theories of evolution systems, fading phase spaces for infinite delay and the stochastic analysis techniques, we apply the results obtained to consider the existence and uniqueness results of weighted pseudo almost automorphic solutions in distribution to a class of nonautonomous stochastic neutral functional equations with infinite delay under ${ S^2_{\gamma} }$ -weighted pseudo almost automorphic coefficients in real separable Hilbert spaces.

PDFhttps://acadsol.eu/dsa/articles/27/3/4.pdf
DOI10.12732/dsa.v27i3.4
Refereed DesignationRefereed
Full Text

REFERENCES
[1] S. Abbas, Existence and attractivity of k-pseudo almost automorphic sequence
solution of a model of bidirectional neural networks, Acta Appl. Math., 119 (2012), 57-74.
[2] P. Bezandry, T. Diagana, Almost Periodic Stochastic Processes, Springer, New York, (2011).
[3] J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic
functions : New developments and aplications, Nonlinear Anal., 75 (2012), 2426- 2447.
[4] S. Bochner, A new approach to almost automorphicity, Proc. Natl. Acad. Sci.
USA, 48 (1962), 2039-2043.
[5] S. Bochner, Continuous mappings of almost automorphic and almost periodic
functions, Proc. Natl. Acad. Sci. USA, 52 (1964), 907-910.
[6] Y. K. Chang, Z. H. Zhao, G. M. N’Gu´er´ekata, R. Ma, Stepanov-like almost
automorphy for stochastic processes and applications to stochastic differential
equations, Nonlinear Anal. RWA, 12 (2011), 1130-1139.
[7] Z. Chen, W. Lin, Square-mean pseudo almost automorphic process and its application
to stochastic evolution equations, J. Funct. Anal., 261 (2011) 69-89.
[8] Z. Chen, W. Lin, Square-mean weighted pseudo almost automorphic solutions
for non-autonomous stochastic evolution equations, J. Math. Pures Appl., 100
(2013), 476-504.
[9] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in
Abstract Spaces, Springer, New York, (2013).
[10] T. Diagana, Evolution equations in generalized Stepanov-like pseudo almost automorphic
spaces, Electron. J. Diff. Equ., 2012 (2012), 1-19.
[11] T. Diagana, Weighted pseudo-almost periodic functions and applications, C. R.
Acad. Sci. Paris, Ser I, 343 (2006), 643-646.
[12] H. S. Ding, J. Liang, T. J. Xiao, Some properties of Stepanov-like almost automorphic
functions and applications to abstract evolution equations, Appl. Anal.,
88 (2009), 1079-1091.
[13] R. M. Dudley, Real Analysis and Probability, second ed., Cambridge University Press, (2003).
[14] M. M. Fu, Z. X. Liu, Square-mean almost automorphic solutions for some stochastic
differential equations, Proc. Amer. Math. Soc., 138 (2010), 3689-3701.
[15] Y. Hino, S. Murakami, T. Naito, Functional Differential Equations with infinite
delay, Springer, Berlin, (1991).
[16] H. Kuo, Introduction to Stochastic Integration, Springer, New York, (2006).
[17] K. X. Li, Weighted pseudo almost automorphic solutions for nonautonomous
SPDEs driven by L´evy noise, J. Math. Anal. Appl., 427 (2015), 686-721.
[18] A. Lin, Y. Ren, N. Xia, On neutral impulsive stochastic integro-differential equations
with infinite delays via fractional operators, Math. Comput. Modelling, 51
(2010), 413-424.
[19] Z. X. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations
driven by L´evy noise, J. Funct. Anal., 266 (2014), 1115-1149.
[20] C. Lizama, J. G. Mesquita, Almost automorphic solutions of dynamic equations
on time scales, J. Funct. Anal., 265 (2013), 2267-2311.
[21] I. Mishra, D. Bahuguna, Existence of almost automorphic solutions of neutral
differential equations, J. Nonlinear Evol. Equa. Appl., 2012 (2012), 17-28.
[22] G. M. N’Gu´er´ekata, Almost Automorphic and Almost Periodic Functions in Abstract
Spaces, Kluwer Academic, New York, (2001).
[23] G. M. N’Gu´er´ekata, Topics in Almost Automorphy, Springer, New York, (2005).
[24] G. M. N’Gu´er´ekata, A. Pankov, Stepanov-like almost automorphic functions and
monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.
[25] B. ∅ksendal Bernt, Stochastic Differential Equations, Springer, Berlin, (2005).
[26] Y. Ren, Q. Bi, R. Sakthivel, Stochastic functional differential equations with
infinite delay driven by G-Brownian motion, Math. Meth. Appl. Sci., 36 (2013), 1746-1759.
[27] Y. Ren, X. Cheng, R. Sakthivel, On time-dependent stochastic evolution equations
driven by fractional Brownian motion in a Hilbert space with finite delay,
Math. Meth. Appl., (2013), doi:10.1002/mma.2967.
[28] Y. Ren, R. Sakthivel, Existence, uniqueness and stability of mild solutions for
second-order neutral stochastic evolution equations with infinite delay and Poisson
jumps, J. Math. Phys., 53 (2012), 073517.
[29] P. Revathi, R. Sakthivel, Y. Ren, S. Marshal Anthoni, Existence of almost automorphic
mild solutions to non-autonomous neutral stochastic differential equations,
Applied Mathematics and Computation, 230(2) (2014), 639-649.
[30] R. Sakthivel, P. Revathi, S. Marshal Anthoni, Existence of pseudo almost automorphic
mild solutions to stochastic fractional differential equations, Nonlinear
Anal., 75 (2012), 3339-3347.
[31] R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional
stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86.
[32] C. Tang, Y. K. Chang, Stepanov-like weighted asymptotic behavior of solutions to
some stochastic differential equations in Hilbert spaces, Appl. Anal., 93 (2014),
2625-2646.
[33] Y. Wang, Z. Liu, Almost periodic solutions for stochastic differential equations
with L´evy noise, Nonlinearity, 25 (2012), 2803-2821.
[34] Z. N. Xia, M. Fan, A Massera type criteria for almost automorphy of nonautonomous
boundary differential equations, Electron. J. Qual. Theory Diff. Equ.,
73 (2011), 1-13.
[35] Z. N. Xia, M. Fan, Weighted Stepanov-like pseudo almost automorphy and applications,
Nonlinear Anal., 75 (2012), 2378-2397.
[36] R. Zhang, Y. K. Chang, G. M. N’Gu´er´ekata, Existence of weighted pseudo almost
automorphic mild solutions to semilinear integral equations with Sp-weighted
pseudo almost automorphic coefficients, Discrete Contin. Dyn. Syst.-A, 33
(2013), 5525-5537.
[37] Z. H. Zhao, Y. K. Chang, J. J. Nieto, Square-mean asymptotically almost automorphic
process and its application to stochastic integro-differential equations,
Dynam. Syst. Appl., 22 (2013), 269-284.