**REFERENCES**

[1] S. Abbas, Existence and attractivity of k-pseudo almost automorphic sequence

solution of a model of bidirectional neural networks, Acta Appl. Math., 119 (2012), 57-74.

[2] P. Bezandry, T. Diagana, Almost Periodic Stochastic Processes, Springer, New York, (2011).

[3] J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic

functions : New developments and aplications, Nonlinear Anal., 75 (2012), 2426- 2447.

[4] S. Bochner, A new approach to almost automorphicity, Proc. Natl. Acad. Sci.

USA, 48 (1962), 2039-2043.

[5] S. Bochner, Continuous mappings of almost automorphic and almost periodic

functions, Proc. Natl. Acad. Sci. USA, 52 (1964), 907-910.

[6] Y. K. Chang, Z. H. Zhao, G. M. N’Gu´er´ekata, R. Ma, Stepanov-like almost

automorphy for stochastic processes and applications to stochastic differential

equations, Nonlinear Anal. RWA, 12 (2011), 1130-1139.

[7] Z. Chen, W. Lin, Square-mean pseudo almost automorphic process and its application

to stochastic evolution equations, J. Funct. Anal., 261 (2011) 69-89.

[8] Z. Chen, W. Lin, Square-mean weighted pseudo almost automorphic solutions

for non-autonomous stochastic evolution equations, J. Math. Pures Appl., 100

(2013), 476-504.

[9] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in

Abstract Spaces, Springer, New York, (2013).

[10] T. Diagana, Evolution equations in generalized Stepanov-like pseudo almost automorphic

spaces, Electron. J. Diff. Equ., 2012 (2012), 1-19.

[11] T. Diagana, Weighted pseudo-almost periodic functions and applications, C. R.

Acad. Sci. Paris, Ser I, 343 (2006), 643-646.

[12] H. S. Ding, J. Liang, T. J. Xiao, Some properties of Stepanov-like almost automorphic

functions and applications to abstract evolution equations, Appl. Anal.,

88 (2009), 1079-1091.

[13] R. M. Dudley, Real Analysis and Probability, second ed., Cambridge University Press, (2003).

[14] M. M. Fu, Z. X. Liu, Square-mean almost automorphic solutions for some stochastic

differential equations, Proc. Amer. Math. Soc., 138 (2010), 3689-3701.

[15] Y. Hino, S. Murakami, T. Naito, Functional Differential Equations with infinite

delay, Springer, Berlin, (1991).

[16] H. Kuo, Introduction to Stochastic Integration, Springer, New York, (2006).

[17] K. X. Li, Weighted pseudo almost automorphic solutions for nonautonomous

SPDEs driven by L´evy noise, J. Math. Anal. Appl., 427 (2015), 686-721.

[18] A. Lin, Y. Ren, N. Xia, On neutral impulsive stochastic integro-differential equations

with infinite delays via fractional operators, Math. Comput. Modelling, 51

(2010), 413-424.

[19] Z. X. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations

driven by L´evy noise, J. Funct. Anal., 266 (2014), 1115-1149.

[20] C. Lizama, J. G. Mesquita, Almost automorphic solutions of dynamic equations

on time scales, J. Funct. Anal., 265 (2013), 2267-2311.

[21] I. Mishra, D. Bahuguna, Existence of almost automorphic solutions of neutral

differential equations, J. Nonlinear Evol. Equa. Appl., 2012 (2012), 17-28.

[22] G. M. N’Gu´er´ekata, Almost Automorphic and Almost Periodic Functions in Abstract

Spaces, Kluwer Academic, New York, (2001).

[23] G. M. N’Gu´er´ekata, Topics in Almost Automorphy, Springer, New York, (2005).

[24] G. M. N’Gu´er´ekata, A. Pankov, Stepanov-like almost automorphic functions and

monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.

[25] B. ∅ksendal Bernt, Stochastic Differential Equations, Springer, Berlin, (2005).

[26] Y. Ren, Q. Bi, R. Sakthivel, Stochastic functional differential equations with

infinite delay driven by G-Brownian motion, Math. Meth. Appl. Sci., 36 (2013), 1746-1759.

[27] Y. Ren, X. Cheng, R. Sakthivel, On time-dependent stochastic evolution equations

driven by fractional Brownian motion in a Hilbert space with finite delay,

Math. Meth. Appl., (2013), doi:10.1002/mma.2967.

[28] Y. Ren, R. Sakthivel, Existence, uniqueness and stability of mild solutions for

second-order neutral stochastic evolution equations with infinite delay and Poisson

jumps, J. Math. Phys., 53 (2012), 073517.

[29] P. Revathi, R. Sakthivel, Y. Ren, S. Marshal Anthoni, Existence of almost automorphic

mild solutions to non-autonomous neutral stochastic differential equations,

Applied Mathematics and Computation, 230(2) (2014), 639-649.

[30] R. Sakthivel, P. Revathi, S. Marshal Anthoni, Existence of pseudo almost automorphic

mild solutions to stochastic fractional differential equations, Nonlinear

Anal., 75 (2012), 3339-3347.

[31] R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional

stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86.

[32] C. Tang, Y. K. Chang, Stepanov-like weighted asymptotic behavior of solutions to

some stochastic differential equations in Hilbert spaces, Appl. Anal., 93 (2014),

2625-2646.

[33] Y. Wang, Z. Liu, Almost periodic solutions for stochastic differential equations

with L´evy noise, Nonlinearity, 25 (2012), 2803-2821.

[34] Z. N. Xia, M. Fan, A Massera type criteria for almost automorphy of nonautonomous

boundary differential equations, Electron. J. Qual. Theory Diff. Equ.,

73 (2011), 1-13.

[35] Z. N. Xia, M. Fan, Weighted Stepanov-like pseudo almost automorphy and applications,

Nonlinear Anal., 75 (2012), 2378-2397.

[36] R. Zhang, Y. K. Chang, G. M. N’Gu´er´ekata, Existence of weighted pseudo almost

automorphic mild solutions to semilinear integral equations with Sp-weighted

pseudo almost automorphic coefficients, Discrete Contin. Dyn. Syst.-A, 33

(2013), 5525-5537.

[37] Z. H. Zhao, Y. K. Chang, J. J. Nieto, Square-mean asymptotically almost automorphic

process and its application to stochastic integro-differential equations,

Dynam. Syst. Appl., 22 (2013), 269-284.