SOLUTION PROFILES BEYOND QUENCHING FOR SINGULAR SEMILINEAR PARABOLIC PROBLEMS

TitleSOLUTION PROFILES BEYOND QUENCHING FOR SINGULAR SEMILINEAR PARABOLIC PROBLEMS
Publication TypeJournal Article
Year of Publication2018
AuthorsBOONKLURB RATINAN, KAEWRAK KEERATI, TREEYAPRASERT TAWIKAN
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page673
Pagination18
Date Published08/2018
ISSN1056-2176
AMS Subject Classification35K35, 35K57, 35K61
Abstract

Let $T\leq\infty,~a>0,$ $0<r<1,~D=(0,a),~\Omega=D\times(0,T]$ and $\chi(S)$ be the characteristic function of the set $S$. This article studies the steady-state solution after quenching has occured of the semilinear parabolic equation with singularity
\begin{align*}
&  u_{t}-u_{xx}-\frac{r}{x}u_{x}=f(u)\chi(\{u<c\})~\text{in}~\Omega,\\
&  u(x,0)=0~\text{on}~\bar{D},\\
&  u(0,t)=0=u(a,t)~\text{for}~0<t<T.
\end{align*}

It is shown that as $t$ tends to $\infty$, all weak solutions $u\left(x,t\right)  $ tend to a unique steady-state solution $U(x)\text{ for }\ 0<{{b}_{s}^{\ast}}\leq x\leq{{B}_{s}^{\ast}}<a$. The numerical methods are developed for computing ${{b}_{s}^{\ast}}$ and ${{B}_{s}^{\ast}}$.

PDFhttps://acadsol.eu/dsa/articles/27/3/15.pdf
DOI10.12732/dsa.v27i3.15
Refereed DesignationRefereed
Full Text

REFERENCES

[1] A. Acker and W. Walter, The quenching problem for nonlinear parabolic differential equations, Lecture Notes in Math., 564 (1976), 1-12.
[2] V. Alexiades, Generalized axially symmetric heat potentials and singular parabolic initial-boundary value problems, Arch. Ration. Mech. Anal., 79 (1982), 325-350.
[3] O. Arena, On a singular parabolic equation related to axially symmetric heat potentials, Ann. Mat. Pura Appl., 4 (1975), 347-393.
[4] J.C. Carrillo Escobar, Blow-up and quenching phenomena for singular semilinear parabolic problems, University of Lousianna at Lafayette, 2007.
[5] C.Y. Chan and R. Boonblurb, A computational method of the solution profile beyond quenching for a multi-dimensional parabolic problem, Proceedings of Neural Parallel Sci. Comput., 4 (2010), 65-71.
[6] C.Y. Chan and R. Boonklurb, Solution profiles beyond quenching for a radially symmetric multi-dimensional parabolic problem, Nonlinear Anal., 76 (2013), 68-79.
[7] C.Y. Chan and C.S. Chen, A numerical method for semilinear singular parabolic quenching problems, Quart. Appl. Math., 47 (1989), 45-57.
[8] C.Y. Chan and H.G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20 (1989), 558-566.
[9] C.Y. Chan and L. Ke, Beyond quenching for singular reaction-diffusion problems, Math. Methods Appl. Sci., 17 (1994), 1-9.
[10] C.Y. Chan and P.C. Kong, Solution profile beyond quenching for degenerate reaction-diffusion problems, Nonlinear Anal., 24 (1995), 1755-1763.
[11] C.Y. Chan and H.T. Liu, Does quenching for degenerate parabolic equations occur at the boundary?, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 8 (2001), 121-128.
[12] H. Kawarada, On solution of initial-buondary problem for $u_t = u_{xx} + 1/(1 - u)$, Pulb. Res. Inst. Math. Sci., 10 (1975), 243-260.
[13] A.D. Solomon, Melt time and heat flux for a simple PCM body, Solar Energy, 22 (1979), 251-237.
[14] K.R. Stromberg, An introduction to classical real analysis, Belmont, CA: Wadsworth International Group, 1981.