POSITIVE SOLUTIONS OF A FOURTH-ORDER PERIODIC BOUNDARY VALUE PROBLEM WITH PARAMETER

TitlePOSITIVE SOLUTIONS OF A FOURTH-ORDER PERIODIC BOUNDARY VALUE PROBLEM WITH PARAMETER
Publication TypeJournal Article
Year of Publication2018
AuthorsWU YANG, SUN JIAN-PING, ZHAO YA-HONG
JournalDynamic Systems and Applications
Volume27
Issue33
Start Page637
Pagination16
Date Published07/2018
ISSNDynamic Systems and Applications
AMS Subject Classification34B15
Abstract

In this paper, we study the following periodic boundary value problem of fourth-order ordinary differential equation
  \begin{equation*}
  \left\{
   \begin{aligned}
   &u^{(4)}(t)+\alpha u^{\prime\prime}(t)-\rho^{4}u(t)+\lambda f(t,u(t))=0,~t\in{[0,2\pi]},\\
   &u^{(i)}(0)=u^{(i)}(2\pi),~i=0,1,2,3,\\
   \end{aligned}
   \right.
  \end{equation*}
where $\alpha$ and $\rho$ are constants satisfying $\rho\neq0$ and $4\alpha+16\rho^{4}<1$, and $\lambda>0$ is a parameter. By imposing some conditions on the nonlinear term $f$, we obtain the existence and multiplicity of positive solutions to the above problem for suitable $\lambda$. The main tool used is Guo-Krasnoselskii fixed point theorem.

PDFhttps://acadsol.eu/dsa/articles/27/3/12.pdf
DOI10.12732/dsa.v27i3.12
Refereed DesignationRefereed
Full Text

REFERENCES

[1] C.P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304.
[2] R. Ma, H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59 (1995), 225-231.
[3] Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281 (2003), 477-484.
[4] Q. Yao, Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem, Nonlinear Anal., 63 (2005), 237-246.
[5] Q. Yao, Positive solutions of a nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right, Nonlinear Anal., 69 (2008), 1570-1580.
[6] Y. Yang, J. Zhang, Nontrivial solutions for some fourth order boundary value problems with parameters, Nonlinear Anal., 70 (2009), 3966-3977.
[7] W. Li, M. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations, Appl. Math. Lett., 22 (2009), 314-319.
[8] Y. Li, Existence of positive solutions for a fourth-order periodic boundary value problem, Abstr. Appl. Anal., 2011 (2011), 12 pages, Artical ID 826451.
[9] C. Zhai, R. Song, Q. Han, The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem, Comput. Math. Appl., 62 (2011), 2639-2647.
[10] J. R. Graef, L. Kong, Q. Kong, B. Yang, Positive solutions to a fourth order boundary value problem, Results Math., 59 (2011), 141-155.
[11] M. Pei, S. K. Chang, Solvability and dependence on a parameter of a fourth-order periodic boundary value problem, J. Appl. Math. Comput., 49 (2015), 181-194.
[12] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, NY, USA (1988).
[13] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, The Netherlands (1964).