MEASURE EXPANSIVENESS FOR C1 GENERIC DIFFEOMORPHISMS

TitleMEASURE EXPANSIVENESS FOR C1 GENERIC DIFFEOMORPHISMS
Publication TypeJournal Article
Year of Publication2018
AuthorsLEE MANSEOB
JournalDynamic Systems and Applications
Volume27
Issue3
Start Page629
Pagination8
Date Published07/2018
ISSN1056-2176
AMS Subject Classification34D10, 37D30
Abstract

Let M be a closed smooth Reimannian manifold, and let $f : M \to M$ be a diffeomorphism. In the paper, we show that $C^1$ generically, a diffeomorphism $f$ is measure expansive then it is Axiom A without cycles.

PDFhttps://acadsol.eu/dsa/articles/27/3/11.pdf
DOI10.12732/dsa.v27i3.11
Refereed DesignationRefereed
Full Text

REFERENCES

[1] N. Aoki, The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Bras. Mat., 23 (1992), 21-65.
[2] A. Arbieto, Periodic orbits and expansiveness, Math. Z., 269 (2011), 801-807.
[3] C. Boantti, L. J. D´ıaz and E. R. Pujals, A C1 generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math., 158 (2003), 355-418.
[4] L. J. Diaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math., 183 (1999), 1-43.
[5] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.
[6] J. Franks and C. Robinson, A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., 223 (1976), 267-278.
[7] S. Hayashi, Diffeomorphisms in F1(M) satisfy Axiom A, Ergodic Thoery & Dynam. Syst., 12 (1992), 233-253.
[8] H. Kato, Continuum-wise expansive homeomorphisms, Can. J. Math., 45 (1993), 576-598.
[9] N. Koo, K. Lee and M. Lee, Generic diffeomorphisms with measure-expansive homoclinic classes, J. Diff. Equat. Appl., 20 (2014), 228-236.
[10] K. Lee and M. Lee, Measure-expansive homoclinic classes, Osaka Journal of Mathematics, 53 (2016), 873-887.
[11] K. Lee and M. Lee, Hyperbolicity C1-stably expansive homoclinic classes, Discerete Cont. Dynam. Syst., 27 (2010), 1133-1145.
[12] M. Lee, Robustly chain transitive diffeomorphisms, J. Inequal. Appl. (2015), 1-6.
[13] M. Lee, Measure expansive homoclinic classes for generic diffeomorphisms, Appl. Math. Sci., 9 (2015), 3623-3628.
[14] M. Lee, General expansiveness for diffeomorphisms from the robust and generic properties, J. Dynam. Cont. Syst., 22 (2016), 459-464.
[15] C. Morales, A generalization of expansivity, Discrete and Cont. Dynam. Syst., 32 (2012), 293-301.
[16] C. A. Morales and V. F. Sirvent, Expansive measures, In: 29 Coloquio Brasileiro de Matematica, 2013.
[17] R. Mane, Contributions to the stability conjecture, Topology, 17 (1978), 383-396. 
[18] R. Mane, An ergodic closing lemma, Ann. Math., 116 (1982), 503-540.
[19] K. Sakai, Continuum-wise expansive diffeomorphisms, Publca. Mate., 41 (1997), 375-382.
[20] K. Sakai, N. Sumi, and K. Yamamoto, Measure-expansive diffeomorphisms, J. Math. Anal. Appl., 414 (2014), 546.552.
[21] D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity, 22 (2009), 729-733.