EXISTENCE OF THE CLASSICAL SOLUTION FOR DEGENERATE QUASILINEAR PARABOLIC PROBLEMS WITH SLOW DIFFUSIONS

TitleEXISTENCE OF THE CLASSICAL SOLUTION FOR DEGENERATE QUASILINEAR PARABOLIC PROBLEMS WITH SLOW DIFFUSIONS
Publication TypeJournal Article
Year of Publication2009
AuthorsCHAN W.Y
JournalDynamic Systems and Applications
Volume18
Start Page63
Pagination17
Date Published2009
ISSN1056-2176
AMS Subject Classification35K55, 35K57, 35K60, 35K65
Abstract

Let T ≤ ∞, b be a positive number, m be a positive number such that m > 1, and q be a nonnegative number. Existence and uniqueness of a classical solution are studied for the following degenerate quasilinear parabolic problem,

                                  xqut = ( u)xx + bf( u )  in (0, 1) × (0, T),

                                 u( x, 0 )= u0( x ) in [0, 1], u (0, t) = 0 = u ( 1, t ) for t ∈ (0, T),

where u0( x ) is a positive function for 0 < x < 1,  u0m( x ) ∈ C2+α ( [0, 1] ) for some α ∈ ( 0, 1 ), u0( 0 ) = u0( 1 ) = 0,  and f (u) is a given function such that f (0) ≥ 0 and f′ (u) ≥ 0 for u ≥ 0. Furthermore, a criterion for u to blow up in a finite time is given.

PDFhttps://acadsol.eu/dsa/articles/18/06-DSA-CY-6-wyChan.pdf
Refereed DesignationRefereed