Biblio

Export 441 results:
Author Title [ Type(Desc)] Year
Journal Article
A. K. LAZOPOULOS and KARAOULANIS, D., ON L-FRACTIONAL DERIVATIVES AND L-FRACTIONAL HOMOGENEOUS EQUATIONS, Communications in Applied Analysis, vol. 21, no. 2, p. 20, 2017.
T. SEKAR, UTHAYAKUMAR, R., and MYTHURADEVI, P., LIMITED CAPACITY STOREHOUSE INVENTORY MODEL FOR DETERIORATING ITEMS WITH PRESERVATION TECHNOLOGY AND PARTIAL BACKLOGGING UNDER INFLATION, Inventory Model, vol. 21, no. 3, p. 28, 2017.
A. H. M. E. D. NASRI, BOUKHEMIS, A. M. M. A. R., and ESPAÑOL, F. R. A. N. C. I. S. C. O. M. A. R. C. E. L. L. Á, LINEAR COMBINATIONS OF 2-ORTHOGONAL POLYNOMIALS: GENERATION AND DECOMPOSITION PROBLEMS, LINEAR COMBINATIONS OF 2-ORTHOGONAL POLYNOMIALS, vol. 22, no. 1, p. 24, 2018.
F. E. R. H. A. N. M. ATICI and ELOE, P. A. U. L. W., LINEAR FORWARD FRACTIONAL DIFFERENCE EQUATIONS, vol. 19, no. 1, p. 11, 2015.
C. STUART, LOCATING CERAMI SEQUENCES IN A MOUNTAIN PASS GEOMETRY, vol. 15, no. 4, p. 20, 2011.
C. A. STUART, LOCATING CERAMI SEQUENCES IN A MOUNTAIN PASS GEOMETRY, vol. 15, no. 4, p. 20, 2011.
K. Ito, LOSS OF CONVEXITY OF COMPACT HYPERSURFACES MOVED BY SURFACE DIFFUSION, vol. 6, no. 1, p. 22, 2002.
G. A. Anastassiou and KESTER, M. E. R. V. E., Lp APPROXIMATION WITH RATES BY GENERALIZED DISCRETE SINGULAR OPERATORS, vol. 19, no. 2, p. 18, 2015.
V. LAKSHMIKANTHAM, LEELA, S., and SAMBANDHAM, M., LYAPUNOV THEORY FOR FRACTIONAL DIFFERENTIAL EQUATIONS, vol. 12, no. 4, p. 12, 2008.
Q. I. N. G. K. A. I. KONG and GEORGE, T. H. O. M. A. S. E. S. T., MATCHING METHOD FOR NODAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS, vol. 19, no. 1, p. 19, 2015.
M. A. N. A. L. BADGAISH, LIN, J. E. N. G. - E. N. G., and SESHAIYER, P. A. D. M. A. N. A. B. H. A. N., MATHEMATICAL ANALYSIS AND SIMULATION OF A COUPLED NONLINEAR FLUID STRUCTURE INTERACTION MODEL WITH APPLICATIONS TO ANEURYSMS, vol. 22, no. 4, p. 26, 2018.
A. N. D. R. I. I. SAFONYK, MATHEMATICAL DESIGN OF PROCESS OF WATER TREATMENT BY FILTER-CLARIFIER WITH LAYER OF HANGING UP SEDIMENT, Communications in Applied Analysis, vol. 20, no. 4, p. 12, 2016.
A. I. Abakumov and Giricheva, E. E., MATHEMATICAL MODEL OF OPTIMUM DISTRIBUTION OF POPULATION INCOMES, Communications in Applied Analysis, vol. 11, no. 2, p. 283, 2007.
J. A. G. A. N. M. O. H. A. N. JONNALAGADDA, MATRIX EXPONENTIAL FUNCTIONS OF FRACTIONAL NABLA CALCULUS, Communications in Applied Analysis, vol. 21, no. 4, p. 14, 2017.
A. M. I. T. K. VERMA and SINGH, M. A. N. D. E. E. P., MAXIMUM PRINCIPLE AND NONLINEAR THREE POINT SINGULAR BOUNDARY VALUE PROBLEMS ARISING DUE TO SPHERICAL SYMMETRY, vol. 19, no. 2, p. 15, 2015.
M. O. U. F. F. A. K. BENCHOHRA, HENDERSON, J. O. H. N. N. Y., and SEBA, D. J. A. M. I. L. A., MEASURE OF NONCOMPACTNESS AND FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES, vol. 12, no. 4, p. 9, 2008.
G. I. U. S. E. P. P. E. RIEY and TOMASSETTI, G. I. U. S. E. P. P. E., MICROPOLAR LINEARLY ELASTIC RODS, vol. 13, no. 4, p. 11, 2009.
M. O. OGUNDIRAN, ON THE MILD SOLUTIONS OF QUANTUM STOCHASTIC EVOLUTION INCLUSIONS, vol. 19, no. 2, p. 12, 2015.
A. Kristaly, A MINIMAX PRINCIPLE WITH A GENERAL PALAIS-SMALE CONDITION, Communications in Applied Analysis, vol. 9, no. 2, p. 297, 2005.
R. O. B. E. R. T. O. LIVREA and MARANO, S. A. L. V. A. T. O. R. E. A., ON A MIN-MAX PRINCIPLE FOR NON-SMOOTH FUNCTIONS AND APPLICATIONS, vol. 13, no. 3, p. 20, 2009.
A. DEVIKA and SURESH, G., (M,K)-QUASI CLASS Q AND (M,K)-QUASI *CLASS Q COMPOSITION OPERATORS ON WEIGHTED HARDY SPACE, Communications in Applied Analysis, vol. 21, no. 1, p. 14, 2017.
R. MANIKANDAN and NAIR, S. A. J. E. E. V. S., M/M/1/1 QUEUEING-INVENTORY SYSTEM WITH RETRIAL OF UNSATISFIED CUSTOMERS, Communications in Applied Analysis, vol. 21, no. 2, p. 20, 2017.
Z. V. I. R. E. T. C. H. K. I. M. A. N. KÖNIGSBERG, MODELLING AND VERIFICATION ANALYSIS OF THE BIOLOGICAL COOPERATIVE COMPETITION PROBLEM VIA A FIRST ORDER LOGIC APPROACH, vol. 21, no. 3, p. 16, 2017.
Z. V. I. R. E. T. C. H. K. I. M. A. N. KÖNIGSBERG, MODELLING AND VERIFICATION ANALYSIS OF THE BIOLOGICAL INTERACTION BETWEEN SPECIES VIA A MODAL LOGIC APPROACH, Communications in Applied Analysis, vol. 22, no. 3, p. 14, 2018.
M. I. R. E. L. L. A. C. A. P. P. E. L. L. E. T. T. MONTANO and DIOMEDE, S. A. B. R. I. N. A., MODIFIED BERNSTEIN-SCHNABL OPERATORS ON CONVEX COMPACT SUBSETS OF LOCALLY CONVEX SPACES AND THEIR LIMIT SEMIGROUPS, vol. 13, no. 4, p. 24, 2009.