Biblio

Export 441 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
J. CABALLERO, HARJANI, J., and SADARANGANI, K., POSITIVE AND NONDECREASING SOLUTIONS TO A SINGULAR BOUNDARY VALUE PROBLEM FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS, Communications in Applied Analysis, vol. 15, no. 2, p. 272, 2011.
A. L. E. S. S. A. N. D. R. O. CALAMAI, BRANCHES OF HARMONIC SOLUTIONS FOR A CLASS OF PERIODIC DIFFERENTIAL-ALGEBRAIC EQUATIONS, Communications in Applied Analysis, vol. 15, no. 3, p. 282, 2011.
A. L. E. S. S. A. N. D. R. O. CALAMAI, FURI, M. A. S. S. I. M. O., and VIGNOLI, A. L. F. O. N. S. O., AN OVERVIEW ON SPECTRAL THEORY FOR NONLINEAR OPERATORS, vol. 13, no. 4, p. 26, 2009.
M. I. C. H. E. L. E. CAMPITI and TACELLI, C. R. I. S. T. I. A. N., PERTURBATIONS OF BERNSTEIN-DURRMEYER OPERATORS ON THE SIMPLEX AND BEST APPROXIMATION PROPERTIES, vol. 13, no. 4, p. 11, 2009.
A. N. N. A. CAPIETTO and SOAVE, N. I. C. O. L. A., SOME REMARKS ON MATHER’S THEOREM AND AUBRY-MATHER SETS, Communications in Applied Analysis, vol. 15, no. 3, p. 298, 2011.
P. A. O. L. A. CAVALIERE and DE LUCIA, P. A. O. L. O., SOME NEW RESULTS IN NON-ADDITIVE MEASURE THEORY, vol. 13, no. 4, p. 11, 2009.
J. CHABROWSKI, ON THE NEUMANN PROBLEM WITH SINGULAR AND SUPERLINEAR NONLINEARITIES, vol. 13, no. 3, p. 13, 2009.
T. H. I. E. R. R. Y. CHAMPION, DE PASCALE, L. U. I. G. I., and JIMENEZ, C. H. L. O. E., THE ∞-EIGENVALUE PROBLEM AND A PROBLEM OF OPTIMAL TRANSPORTATION, vol. 13, no. 4, p. 19, 2009.
M. CHANDRAMOULEESWARAN, MURALIKRISHNA, P., and SUJATHA, K., FUZZY β-SUBALGEBRAIC TOPOLOGICAL SPACES, Communications in Applied Analysis, vol. 20, no. 3, p. 10, 2016.
Z. H. E. N. G. W. E. I. CHEN, ZHANG, R. U. O. J. U. N., and WANG, L. I. N. S. H. A. N., FINITE-TIME STOCHASTIC SYNCHRONIZATION FOR A CLASS OF BAM NEURAL NETWORKS WITH UNCERTAIN PARAMETERS, Communications in Applied Analysis, vol. 20, no. 2, p. 14, 2016.
Y. Q. Chen, PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS WITH SMALL PERTURBATIONS, Communications in Applied Analysis, vol. 9, no. 1, p. 41, 2005.
J. I. N. H. A. I. CHEN, O’REGAN, D. O. N. A. L., and TISDELL, C. H. R. I. S. T. O. P. H. E. R. C., SOME RESULTS ON PERIODIC SOLUTIONS FOR EVEN ORDER DIFFERENTIAL EQUATIONS, vol. 12, no. 1, p. 5, 2008.
B. O. U. M. E. D. I. E. N. E. CHENTOUF and GUESMIA, A. I. S. S. A., NEUMANN-BOUNDARY STABILIZATION OF THE WAVE EQUATION WITH DAMPING CONTROL AND APPLICATIONS, Communications in Applied Analysis, vol. 14, no. 4, p. 566, 2010.
R. A. F. F. A. E. L. E. CHIAPPINELLI, FURI, M. A. S. S. I. M. O., and PERA, M. A. R. I. A. P. A. T. R. I. Z. I. A., A NEW THEME IN NONLINEAR ANALYSIS: CONTINUATION AND BIFURCATION OF THE UNIT EIGENVECTORS OF A PERTURBED LINEAR OPERATOR, Communications in Applied Analysis, vol. 15, no. 3, p. 312, 2011.
M. Chipot and Kis, L., ON SOME CLASS OF VARIATIONAL INEQUALITIES AND THEIR REGULARITY PROPERTIES, vol. 6, no. 1, p. 22, 2002.
K. Choi and Choi, Q. - H., SOURCE TERMS AND MULTIPLICITY OF SOLUTIONS IN A NONLINEAR ELLIPTIC EQUATION, Communications in Applied Analysis, vol. 11, no. 2, p. 154, 2007.
Q. - H. Choi, THE STUDY OF A WAVE EQUATION WITH JUMPING NONLINEARITY BY DUALITY FORMULATION, Communications in Applied Analysis, vol. 9, no. 2, p. 160, 2005.
A. CHOWDHURY and CHRISTOV, C. I., ON THE APPLICATION OF RANDOM-POINT APPROXIMATION FOR IDENTIFICATION OF THE EFFECTIVE DIFFUSIVITY COEFFICIENT OF POLYDISPERSE SPHERICAL SUSPENSION, Communications in Applied Analysis, vol. 14, no. 3, p. 372, 2010.
J. I. F. E. N. G. CHU and O’REGAN, D. O. N. A. L., POSITIVE SOLUTIONS FOR REGULAR AND SINGULAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS, vol. 10, no. 2, p. 16, 2006.
J. I. F. E. N. G. CHU and O’REGAN, D. O. N. A. L., POSITIVE SOLUTIONS AND EIGENVALUE INTERVALS FOR DISCRETE BOUNDARY VALUE PROBLEMS, vol. 12, no. 3, p. 20, 2008.
J. I. F. E. N. G. CHU and O’REGAN, D. O. N. A. L., POSITIVE PERIODIC SOLUTIONS OF SYSTEM OF FUNCTIONAL DIFFERENCE EQUATIONS, vol. 12, no. 3, p. 10, 2008.
R. Ciarski, NUMERICAL METHODS FOR QUASILINEAR PARABOLIC DIFFERENTIAL FUNCTIONAL EQUATIONS WITH NEUMANN INITIAL BOUNDARY CONDITIONS, Communications in Applied Analysis, vol. 10, no. 3, p. 329, 2006.
T. E. D. CLARKE, GOLDSTEIN, G. I. S. E. L. E. R. U. I. Z., GOLDSTEIN, J. E. R. O. M. E. A., and ROMANELLI, S. I. L. V. I. A., THE WENTZELL TELEGRAPH EQUATION: ASYMPTOTICS AND CONTINUOUS DEPENDENCE ON THE BOUNDARY CONDITIONS, Communications in Applied Analysis, vol. 15, no. 3, p. 324, 2011.