Biblio

Export 441 results:
Author Title [ Type(Desc)] Year
Journal Article
B. O. YANG, POSITIVE SOLUTIONS FOR A BOUNDARY VALUE PROBLEM OF THE DISCRETE BEAM EQUATION, vol. 19, no. 4, p. 11, 2015.
A. BENMEZAI, POSITIVE SOLUTIONS FOR A SECOND ORDER TWO POINT BOUNDARY VALUE PROBLEM, Communications in Applied Analysis, vol. 14, no. 2, p. 190, 2010.
M. I. R. O. S. L. A. W. A. ZIMA, POSITIVE SOLUTIONS FOR FIRST-ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE, vol. 13, no. 4, p. 9, 2009.
J. I. F. E. N. G. CHU and O’REGAN, D. O. N. A. L., POSITIVE SOLUTIONS FOR REGULAR AND SINGULAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS, vol. 10, no. 2, p. 16, 2006.
X. Li, POSITIVE SOLUTIONS FOR SYSTEMS OF NONLINEAR FOURTH-ORDER DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN, vol. 22, no. 2, p. 14, 2018.
J. HENDERSON, NTOUYAS, S. K., and PURNARAS, I. K., POSITIVE SOLUTIONS FOR SYSTEMS OF SECOND ORDER FOUR-POINT NONLINEAR BOUNDARY VALUE PROBLEMS, vol. 12, no. 1, p. 12, 2008.
Q. I. N. G. K. A. I. KONG and MCCABE, M. I. C. H. A. E. L., POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS, vol. 19, no. 4, p. 15, 2015.
A. Boucherif, POSITIVE SOLUTIONS OF NONLOCAL MULTIPOINT BOUNDARY VALUE PROBLEMS, vol. 19, no. 3, p. 11, 2015.
H. A. I. R. O. N. G. LIAN, WANG, H. A. I. Y. A. N., WU, M. E. N. G. N. I. E. N., and GAO, T. A. N. G. A. N., POSITIVE SOLUTIONS OF SINGULAR ALGEBRAIC SYSTEMS WITH A PARAMETER, vol. 19, no. 4, p. 13, 2015.
K. LAN, POSITIVE SOLUTIONS OF SYSTEMS OF HAMMERSTEIN INTEGRAL EQUATIONS, vol. 15, no. 4, p. 8, 2011.
C. U. R. T. I. S. KUNKEL and MARTIN, A. S. H. L. E. Y., POSITIVE SOLUTIONS TO SINGULAR HIGHER ORDER BOUNDARY VALUE PROBLEMS ON PURELY DISCRETE TIME SCALES, vol. 19, no. 4, p. 12, 2015.
D. R. U. M. I. BAINOV and HRISTOVA, S. N. E. Z. H. A. N. A., PRACTICAL STABILITY IN TERMS OF TWO MEASURES FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH “SUPREMUM”, Communications in Applied Analysis, vol. 15, no. 1, p. 88, 2011.
R. B. Khandeparkar, Deo, S., and Dhaigude, D. B., PREEXPONENTIAL AND PRETRIGONOMETRIC FUNCTIONS, c, vol. 14, no. 1, p. 116, 2010.
A. N. D. R. E. Y. ANTONOV, NENOV, S. V. E. T. O. S. L. A. V., and TSVETKOV, T. S. V. E. T. E. L. I. N., PREY-PREDATOR TRIDIAGONAL 4-DIMENSIONAL MODELS, vol. 23, no. 1, p. 10, 2019.
N. G. MEDHIN and UZSOY, R. E. H. A., PRODUCTION PLANNING AND ENGINEERING PROCESS IMPROVEMENT, Communications in Applied Analysis, vol. 22, no. 4, p. 14, 2018.
G. Infante and Pietramala, P., PROFESSOR ESPEDITO DE PASCALE, vol. 13, no. 4, p. 4, 2009.
M. A. Efendiev and Infante, G., PROFESSOR JEFFREY R. L. WEBB, Communications in Applied Analysis, vol. 15, no. 2, p. x, 2011.
H. T. BANKS, FLORES, K. B., ROSEN, I. G., RUTTER, E. M., SIRLANCI, M. E. L. I. K. E., and W. THOMPSON, C. L. A. Y. T. O. N., THE PROHOROV METRIC FRAMEWORK AND AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs, Communications in Applied Analysis, vol. 22, no. 3, p. 32, 2018.
S. V. E. T. O. S. L. A. V. ENKOV, GEORGIEVA, A. T. A. N. A. S. K. A., and PAVLOVA, A. L. B. E. N. A., QUADRATURE RULES AND ITERATIVE NUMERICAL METHOD FOR TWO-DIMENSIONAL NONLINEAR FREDHOLM FUZZY INTEGRAL EQUATIONS, Communications in Applied Analysis, vol. 21, no. 3, p. 30, 2017.
M. O. U. S. S. A. D. E. K. REMILI, OUDJEDI, L. Y. N. D. A. D., and BELDJERD, D. J. A. M. I. L. A., ON THE QUALITATIVE BEHAVIORS OF SOLUTIONS TO A KIND OF NONLINEAR THIRD ORDER DIFFERENTIAL EQUATION WITH DELAY, Communications in Applied Analysis, vol. 20, no. 1, p. 11, 2016.
G. A. Anastassiou and GAL, S. O. R. I. N. G., QUANTITATIVE ESTIMATES IN THE OVERCONVERGENCE OF SOME SINGULAR INTEGRALS, Communications in Applied Analysis, vol. 14, no. 1, p. 20, 2010.
M. Alessandra Ragusa, QUASILINEAR EQUATIONS WITH DISCONTINUOUS COEFFICIENTS, vol. 9, no. 3, p. 6, 2005.
V. A. S. U. N. D. H. A. R. A. J. DEVI and SUSEELA, C. H., QUASILINEARIZATION FOR FRACTIONAL DIFFERENTIAL EQUATIONS, vol. 12, no. 4, p. 11, 2008.
J. M. Machado, QUATERNION FUNCTIONS AND FOUR-DIMENSIONAL RIEMANNIAN METRICS, Communications in Applied Analysis , vol. 9, no. 1, p. 31, 2005.
F. Stenger, Cohen, E., and Riesenfeld, R., RADIAL FUNCTION METHODS OF APPROXIMATION BASED ON USING HARMONIC GREEN’S FUNCTIONS, vol. 6, no. 1, p. 15, 2002.