Completeness Results in Probabilistic Metric Spaces, I

TitleCompleteness Results in Probabilistic Metric Spaces, I
Publication TypeJournal Article
Year of Publication2005
AuthorsHosseini, SB, Saadati, R
Volume9
Issue4
Start Page549
Pagination6
Date Published2005
ISSN1083-2564
AMS54E50, 54E70
Abstract

In this paper, we define probabilistic limit point and consider completeness in probabilistic metric spaces.

URLhttp://www.acadsol.eu/en/articles/9/4/8.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] I. Beg, Fixed points of contractive mappings on probabilistic Banach spaces, Stoch Anal. Appl.,
19 (2001), 455-460.
[2] S.S. Chang, B.S. Lee, Y.J. Cho, Y.Q. Chen, S.M. Kang and J.S. Jung, Generalized contraction
mapping principles and differential equations in probabilistic metric spaces, Proc. Amer. Math.
Soc., 124 (1996), 2367-2376.
[3] B. Lafuerza-Guill´en, A. Rodr´iguez-Lallena and C. Sempi, A study of boundedness in probabilistic
normed spaces, J. Math. Anal. Appl., 232 (1999), 183-196.
[4] R.E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
[5] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942), 535-537.
[6] E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an
application, J. Math. Anal. Appl., 202 (1996), 433-449.
[7] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier-North Holand, New York,
1983.
[8] B. Schweizer, A. Sklar and E. Throp, The metrization of SM-spaces, Pasific J. Math., 10
(1960), 673-675.
[9] B. Schweizer, H. Sherwood and R.M. Tardiff, Contractions on PM-space examples and counterexamples,
Stochastica, XII (1988), no. 1, 5-17.