REFERENCES
[1] I. Al-Subaihi and G. A. Watson, The use of the l1 and l∞ norms in fitting parametric curves
and surfaces to data, Applied Numerical Analysis and Computational Mathematics, To Appear.
[2] A. Atieg and G. A. Watson, A class of methods for fitting a curve or surface to data by
minimizing the sum of squares of orthogonal distances, J. Comp. Appl. Math., 158 (2003), 277-296.
[3] S. J. Ahn, W. Rauh and H.-J. Warnecke, Best-fit of implicit surfaces and plane curves, In:
Mathematical Methods for Curves and Surfaces: Oslo 2000 (Ed-s: T. Lyche and L. L. Schumacker),
Vanderbilt University Press, 2001.
[4] W. Gander, G. H. Golub and R. Strebel, Fitting of circles and ellipses: least square solution,
BIT, 34 (1994), 556-577.
[5] H.-P. Helfrich and D. Zwick, A trust region method for implicit orthogonal distance regression,
Numer. Alg., 5 (1993), 535-545.
[6] H.-P. Helfrich and D. S. Zwick, l1 and l∞ fitting of geometric elements, In: Algorithms for
Approximation IV (Ed-s: J. Levesley, I. Anderson and J. C. Mason), University of Huddersfield(2002), 162-168.
[7] M. R. Osborne and G. A. Watson, An analysis of the total approximation problem in separable
norms, and an algorithm for the total l1 problem, SIAM J. Sci. Stat. Comp., 6 (1985), 410-424.
[8] L. Seufer and H. Sp¨ath, Least squares fitting of conic sections with type identification by
NURBS of degree two, Math. Comm., 4 (1999), 207-218.
[9] H. Sp¨ath, Orthogonal least squares fitting by conic sections, In: Recent Advances in Total Least
Squares and Errors-in-Variables Techniques (Ed. S. Van Huffel), SIAM, Philadelphia (1997),
259-264.
[10] H. Sp¨ath, Total least squares fitting with quadrics, Pure Appl. Maths., 11 (2004), 103-105.
[11] H. Sp¨ath and G. A. Watson, On orthogonal linear l1 approximation, Num. Math., 51 (1987),
531-543.
[12] G. Taubin, Estimation of planar curves, surfaces and nonplanar space curves defined by implicit
equations with applications to edge and range image segmentation, IEEE Trans. PAMI, 13
(1991), no. 11.
[13] D. A. Turner, The Approximation of Cartesian Co-ordinate Data by Parametric Orthogonal
Distance Regression, PhD Thesis, University of Huddersfield, 1999.
[14] J. van Tiel, Convex Analysis, John Wiley and Sons, Chichester, 1984.
[15] J. M. Varah, Least squares data fitting with implicit functions, BIT, 36 (1996), 842-854.
[16] G. A. Watson, On the Gauss-Newton method for l1 orthogonal distance regression, IMA J. of
Num. Anal., 22 (2002), 345-357.
[17] N. Werghi, R. B. Fisher, A. Ashbrook and C. Robertson, Faithful recovering of quadric surfaces
from 3D range data, In: Proc. 2nd Int. Conf. on 3-D Digital Imaging and Modeling, Ottawa,
Canada (1999), 280-289.