REFERENCES
[1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical
growth for the n-Laplacian, Ann. Norm. Sup. Pisa, IV, 17 (1990), 393-413.
[2] Adimuruthi, S.L. Yadava, Nonexistence of positive radial solutions of a quasilinear Neumann
problem with a critical Sobolev exponent, Arch. Rational Mech. Anal., 139 (1997), 239-253.
[3] V. Benci, G. Cerami, Existence of positive solutions of the equation −∆u+a(x)u = u (n+2)/(n−2) in Rn, J. Funct. Anal., 88 (1990), 90-117.
[4] G. Bianchi, Non-existence and symmetry of solutions to the scalar curvature equation, Comm.
Partial Differential Equations, 21 (1996), 229-234.
[5] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of
functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
[6] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
[7] G. Cerami, D. Fortunato, M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic
problems involving critical Sobolev exponents, Ann. Inst. H. Poincar´e, Analyse non Lin´eaire,1 (1984), 341-350.
[8] Y. Deng, Existence of multiple positive solutions of inhomogeneous semi-linear elliptic problems
involving critical exponents, Comm. Partrial Differential Equatioins, 17 (1992), 33-53.
[9] W.-Y. Ding, On a conformally invariant elliptic equation on Rn, Comm. Math. Phys., 107 (1986), 331-335.
[10] W.-Y. Ding, W.-M. Ni, On the elliptic equation ∆u + Ku n+2 n−2 = 0 and related topics, Duke Math. J., 52 (1985), 485-506.
[11] J. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents,
Comm. Pure Appl. Math., 40 (1987), 623-567.
[12] J. Escobar, R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.
[13] J.A. Garcia, I.A. Peral, On limits of solutions of elliptic problems with nearly critical exponent,
Comm. Partial Differential Equations, 17 (1992), 2113-2126.
[14] Y. Matsuzawa, T. Suzuki, Nehari principle and H-systems, Preprint.
[15] A. Mizutani, T. Suzuki, On the iterative and minimizing sequences for semilinear elliptic
equations, I, Japan J. Indust. Appl. Math., 12 (1995), 309-326.
[16] Z. Nehari, On a class of nonlinear second-order defferential equations, Trans. Amer. Math.
Soc., 95 (1960), 101-123.
[17] E.S. Noussair, J. Yang, On the existence of multiple positive solutions of critical semilinear
elliptic problems, Nonlinear Analysis TMA, 26 (1996), 1323-1346.
[18] X. Pan, X. Wang, Blow-up behavior of ground states of semilinear elliptic equations in Rn
involving critical Sobolev exponents, J. Differential Equations, 99 (1992), 78-107.
[19] D. Pollack, Nonuniqueness and high energy solutions for a conformally invariant scalar equation,
Comm. Anal. Geom., 1 (1993), 347-414.
[20] J.-Y. Sang, Mutiplicity results and bifurcation for nonlinear elliptic problems involving critical
Sobolev exponents, Nonlinear Analysis TMA, 23 (1994), 1493-1498.
[21] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J.
Differential Geometry, 20 (1984), 479-495.
[22] T. Suzuki, Semilinear Elliptic Equations, Gakkotosho, Tokyo, 1994.
[23] D. Zhang, On multiple solutions of ∆u + λu + |u|
4/(n−2)
u = 0, Nonlinear Analysis TMA, 13
(1989), 353-372.