PERIODIC BOUNDARY VALUE PROBLEMS FOR IMPULSIVE FIRST ORDER DIFFERENTIAL INCLUSIONS

TitlePERIODIC BOUNDARY VALUE PROBLEMS FOR IMPULSIVE FIRST ORDER DIFFERENTIAL INCLUSIONS
Publication TypeJournal Article
Year of Publication2005
AuthorsBoucherif, A, NIETO, JUANJ
Volume9
Issue3
Start Page409
Pagination8
Date Published2005
ISSN1083-2564
AMS34A37, 34A60
Abstract

We present new existence results for a differential inclusion with periodic boundary conditions and subject to impulses at fixed times.

URLhttp://www.acadsol.eu/en/articles/9/3/11.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[2] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential
inclusions in Banach spaces, Dynamic Syst. Appl., 8 (1999), 119-126.
[3] M. Benchohra, A. Boucherif and J.J. Nieto, On initial value problems for a class of first order
impulsive differential inclusions, Discuss. Math. Differ. Incl. Control Optim., 21 (2001), 159-
171.
[4] A. Boucherif, First-order differential inclusions with nonlocal initial conditions, Appl. Math.
Lett., 15 (2002), 409-414.
[5] K. Deimling, Multivalued Differential Equations, Walter de Gruyter & Co., Berlin, 1992.
[6] J. Dugundji and A. Granas, Fixed Point Theory. I, Monografie Math. P.W.N., Warsaw, 1982.
[7] M. Frigon and D. O’Regan, Existence results for first order impulsive differential equations, J.
Math. Anal. Appl., 193 (1995), 96-111.
[8] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Pub.,
Dordrecht, 1999.
[9] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer
Acad. Pub., Dordrecht, 1997.
[10] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations,
World Scientific Pub. Co., Singapore, 1989.
[11] J.J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math.
Anal. Appl., 205 (1997), 423-433.
[12] J.J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Lett., 15 (2002),
489-493.
[13] J.J. Nieto, Periodic boundary value problems for first-order impulsive ordinary differential
equations, Nonlinear Anal., 51 (2002), 1223-1232.
[14] D. O’Regan, Fixed-point theory for the sum of two operators, Appl. Math. Letters, 9 (1996),
1-8.
[15] Y.V. Rogovchenko, Impulsive evolution systems: Main results and new trends, Dynam. Conti.
Discrete Impuls. Systems, 3 (1997), 57-88.
[16] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific Pub.
Co., River Edge, NJ, 1995.
[17] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, American Math. Soc.,
Providence, RI, 2002.