REFERENCES
[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[2] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential
inclusions in Banach spaces, Dynamic Syst. Appl., 8 (1999), 119-126.
[3] M. Benchohra, A. Boucherif and J.J. Nieto, On initial value problems for a class of first order
impulsive differential inclusions, Discuss. Math. Differ. Incl. Control Optim., 21 (2001), 159-
171.
[4] A. Boucherif, First-order differential inclusions with nonlocal initial conditions, Appl. Math.
Lett., 15 (2002), 409-414.
[5] K. Deimling, Multivalued Differential Equations, Walter de Gruyter & Co., Berlin, 1992.
[6] J. Dugundji and A. Granas, Fixed Point Theory. I, Monografie Math. P.W.N., Warsaw, 1982.
[7] M. Frigon and D. O’Regan, Existence results for first order impulsive differential equations, J.
Math. Anal. Appl., 193 (1995), 96-111.
[8] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Pub.,
Dordrecht, 1999.
[9] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer
Acad. Pub., Dordrecht, 1997.
[10] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations,
World Scientific Pub. Co., Singapore, 1989.
[11] J.J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math.
Anal. Appl., 205 (1997), 423-433.
[12] J.J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Lett., 15 (2002),
489-493.
[13] J.J. Nieto, Periodic boundary value problems for first-order impulsive ordinary differential
equations, Nonlinear Anal., 51 (2002), 1223-1232.
[14] D. O’Regan, Fixed-point theory for the sum of two operators, Appl. Math. Letters, 9 (1996),
1-8.
[15] Y.V. Rogovchenko, Impulsive evolution systems: Main results and new trends, Dynam. Conti.
Discrete Impuls. Systems, 3 (1997), 57-88.
[16] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific Pub.
Co., River Edge, NJ, 1995.
[17] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, American Math. Soc.,
Providence, RI, 2002.