REFERENCES
[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York (1983).
[2] E. Bodewig, Sur la m ́ethode Laguerre pour l’approximation des racines de certaines ́equations algebriques et sur la critique d’Hermite, Indag. Math. 8 (1946), 570–580.
[3] C. Carstensen and M. S. Petkovic, An improvement of Gargantini’s simultaneous inclusion method for polynomial roots by Schroeder’s correction, Appl. Numer. Math. 13 (1994), 453–468.
[4] I. Gargantini, Parallel Laguerre iterations: Complex case, Numer. Math. 26 (1976), 317–323.
[5] I. Gargantini, Further application of circular arithmetic: Schr ̈oder-like algorithms with error bound for finding zeros of polynomials, SIAM J. Numer. Anal. 15 (1978), 497–510.
[6] I. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros, Numer. Math. 18 (1972), 305–320.
[7] E. Hansen and M. Patrick, A family of root finding methods, Numer. Math. 27 (1977), 257–269.
[8] E. Hansen, M. Patrick and J. Rusnak, Some modifications of Laguerre’s method, BIT 17 (1977), 409–417.
[9] Dj. D. Herceg, Computer Implementation and Interpretation of Iterative Methods for Solving Equations, Master theses, University of Novi Sad, Novi Sad (1997).
[10] P. Kravanja, A modification of Newton’s method for analytic mappings having multiple zeros, Computing 62 (1999), 129–145.
[11] X. M. Niu and T. Sakurai, A method for finding the zeros of polynomials using a companion matrix, Japan J. Idustr. Appl. Math. 20 (2003), 239–256.
[12] A. M. Ostrowski, Solution of Equations in Euclidean and Banach Space, Academic Press, New York (1973).
[13] B. Parlett, Laguerre’s method applied to the matrix eigenvalue problem, Math. Comp. 18 (1964), 464–485.
[14] Lj. D. Petkovic, M. S. Petkovic and D. Zivkovic, Interval root-finding methods of Laguerre-like type, In: Inclusion Methods for Nonlinear Problems with Applications in Engineering, Economics and Physics (ed. J. Herzberger), Springer Verlag, Wien-New York (2002), 199–211.
[15] M. S. Petkovic, On a generalization of the root iterations for polynomial complex zeros in circular interval arithmetic, Computing 27 (1981), 37–55.
[16] M. S. Petkovic, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Springer-Verlag, Berlin-Heidelberg-New York (1989).
[17] M. S. Petkovic, Halley-like method with corrections for the inclusion of polynomial zeros, Computing 62 (1999), 69–88.
[18] M. S. Petkovic, Laguerre-like inclusion method for polynomial zeros, J. Comput. Appl. Math. 152 (2003), 451–465.
[19] M. S. Petkovic and C. Carstensen, On some improved inclusion methods for polynomial roots with Weierstrass’ corrections, Comput. Math. with Appls. 25 (1993), 59–67.
[20] M. S. Petkovi ́c, C. Carstensen and M. Trajkovi ́c, Weierstrass formula and zero-finding methods, Numer. Math. 69 (1995), 353–372.
[21] M. S. Petkovic and D. M. Miloˇsevi ́c, Ostrowski-like method with corrections for the inclusion of polynomial zeros, Reliable Computing (to appear).
[22] M. S. Petkovic and Lj. D. Petkovi ́c, Complex Interval Arithmetic and its Applications, Wiley-VCH, Berlin-Weinheim-New York (1998).
[23] M. S. Petkovic, Lj. D. Petkovic and S. Ilic, On the guaranteed convergence of Laguerre-like method, Comput. Math. with Appls. 46 (2003), 239–251.
[24] M. S. Petkovic, Lj. Petkovic and D. Zivkovic, Laguerre-like methods for the simultaneous approximation of polynomial zeros, In: Topics in Numerical Analysis with Special Emphasis on Nonlinear Problems (eds G. Alefeld, X. Chen), Springer Verlag, Wien-New York (2001), pp. 189–210.
[25] S. Rump, Ten methods to bound multiple roots of polynomials, J. Comput. Appl. Math. 156 (2003), 403-432.
[26] J. W. Schmidt, On the R-order of coupled sequences, Computing 26, 333–342 (1981).