LAGUERRE-LIKE METHODS FOR THE SIMULTANEOUS INCLUSION OF MULTIPLE ZEROS OF POLYNOMIALS

TitleLAGUERRE-LIKE METHODS FOR THE SIMULTANEOUS INCLUSION OF MULTIPLE ZEROS OF POLYNOMIALS
Publication TypeJournal Article
Year of Publication2005
AuthorsPetkovic, MS
Secondary AuthorsMilosevic, DM
Secondary TitleCommunications in Applied Analysis
Volume9
Issue2
Start Page263
Pagination284
Date Published04/2005
Type of Workscientific: mathematics
ISSN1083–2564
AMS30C15, 65G20, 65H05
Abstract

New iterative methods for the simultaneous inclusion of multiple complex zeros of algebraic polynomials, based on a suitable fixed point relation of Laguerre’s type, are considered. The proposed methods are realized in circular complex interval arithmetic and produce disks that contain the sought zeros. The established initial conditions guarantee the convergence of the presented method and the fourth order of convergence. These conditions depend only on available data, which is of considerable practical importance. It is shown that the basic iterative formula is convenient for the construction of interval methods of high computational efficiency since the accelerated convergence rate is obtained with negligible additional operations. Convergence analysis and numerical results are also given.

 

URLhttp://www.acadsol.eu/en/articles/9/2/8.pdf
Short TitleLaguerre-LikeMethods
Refereed DesignationRefereed
Full Text

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York (1983).
[2] E. Bodewig, Sur la m ́ethode Laguerre pour l’approximation des racines de certaines  ́equations algebriques et sur la critique d’Hermite, Indag. Math. 8 (1946), 570–580.
[3] C. Carstensen and M. S. Petkovic, An improvement of Gargantini’s simultaneous inclusion method for polynomial roots by Schroeder’s correction, Appl. Numer. Math. 13 (1994), 453–468.
[4] I. Gargantini, Parallel Laguerre iterations: Complex case, Numer. Math. 26 (1976), 317–323.
[5] I. Gargantini, Further application of circular arithmetic: Schr ̈oder-like algorithms with error bound for finding zeros of polynomials, SIAM J. Numer. Anal. 15 (1978), 497–510.
[6] I. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros, Numer. Math. 18 (1972), 305–320.
[7] E. Hansen and M. Patrick, A family of root finding methods, Numer. Math. 27 (1977), 257–269.
[8] E. Hansen, M. Patrick and J. Rusnak, Some modifications of Laguerre’s method, BIT 17 (1977), 409–417.

[9] Dj. D. Herceg, Computer Implementation and Interpretation of Iterative Methods for Solving Equations, Master theses, University of Novi Sad, Novi Sad (1997).
[10] P. Kravanja, A modification of Newton’s method for analytic mappings having multiple zeros, Computing 62 (1999), 129–145.
[11] X. M. Niu and T. Sakurai, A method for finding the zeros of polynomials using a companion matrix, Japan J. Idustr. Appl. Math. 20 (2003), 239–256.
[12] A. M. Ostrowski, Solution of Equations in Euclidean and Banach Space, Academic Press, New York (1973).
[13] B. Parlett, Laguerre’s method applied to the matrix eigenvalue problem, Math. Comp. 18 (1964), 464–485.
[14] Lj. D. Petkovic, M. S. Petkovic and D. Zivkovic, Interval root-finding methods of Laguerre-like type, In: Inclusion Methods for Nonlinear Problems with Applications in Engineering, Economics and Physics (ed. J. Herzberger), Springer Verlag, Wien-New York (2002), 199–211.
[15] M. S. Petkovic, On a generalization of the root iterations for polynomial complex zeros in circular interval arithmetic, Computing 27 (1981), 37–55.
[16] M. S. Petkovic, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Springer-Verlag, Berlin-Heidelberg-New York (1989).
[17] M. S. Petkovic, Halley-like method with corrections for the inclusion of polynomial zeros, Computing 62 (1999), 69–88.
[18] M. S. Petkovic, Laguerre-like inclusion method for polynomial zeros, J. Comput. Appl. Math. 152 (2003), 451–465.
[19] M. S. Petkovic and C. Carstensen, On some improved inclusion methods for polynomial roots with Weierstrass’ corrections, Comput. Math. with Appls. 25 (1993), 59–67.
[20] M. S. Petkovi ́c, C. Carstensen and M. Trajkovi ́c, Weierstrass formula and zero-finding methods, Numer. Math. 69 (1995), 353–372.
[21] M. S. Petkovic and D. M. Miloˇsevi ́c, Ostrowski-like method with corrections for the inclusion of polynomial zeros, Reliable Computing (to appear).
[22] M. S. Petkovic and Lj. D. Petkovi ́c, Complex Interval Arithmetic and its Applications, Wiley-VCH, Berlin-Weinheim-New York (1998).
[23] M. S. Petkovic, Lj. D. Petkovic and S. Ilic, On the guaranteed convergence of Laguerre-like method, Comput. Math. with Appls. 46 (2003), 239–251.
[24] M. S. Petkovic, Lj. Petkovic and D. Zivkovic, Laguerre-like methods for the simultaneous approximation of polynomial zeros, In: Topics in Numerical Analysis with Special Emphasis on Nonlinear Problems (eds G. Alefeld, X. Chen), Springer Verlag, Wien-New York (2001), pp. 189–210.
[25] S. Rump, Ten methods to bound multiple roots of polynomials, J. Comput. Appl. Math. 156 (2003), 403-432.
[26] J. W. Schmidt, On the R-order of coupled sequences, Computing 26, 333–342 (1981).