Title | STABILITY OF NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS AND APPLICATIONS |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Kamont, Z, Nadolski, A |
Secondary Title | Communications in Applied Analysis |
Volume | 9 |
Issue | 2 |
Start Page | 227 |
Pagination | 246 |
Date Published | 04/2005 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 35R10, 65M12 |
Abstract | A theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type with an unknown function of one variable is presented. The error is estimated by a solution of an initial problem for nonlinear difference equation. This general result is applied to the investigation of the stability of the generalized Lax method for first order partial functional differential equations. Classical solutions of nonlinear problems are approximated in the paper by solutions of suitable quasilinear systems of difference equations. This new approach to the numerical solving of nonlinear equations is generated by a quasilinearization technique. Numerical examples are presented.
|
URL | http://www.acadsol.eu/en/articles/9/2/6.pdf |
Short Title | Stability of Functional Difference Equations |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] H. Brunner, The numerical treatment of ordinary and partial Volterra integro-differential equations, In: Proceed. First Internat. Colloquium on Numerical Anal., Plovdiv, 17-23 August 1992 (Ed-s: D. Bainov, V. Covachev), VSP Utrecht, Tokyo (1993).
[2] M. Cinquini Cibrario, Nuove ricerche sui sistemi di equazioni nonlineari a derivate parziali in piu variabili indipendenti, Rend. Sem. Mat. Fis. Univ. Milano, 52 (1990), 531-550. [3] M. Cinquini Cibrario, Sopra una classe di sistemi di equazioni nonlineari a derivate parziali in pi u variabili indipendenti, Ann. Mat. Pura ed Appl., 140 (1985), 223-253. [4] E. Godlewski, P. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, Berlin-Heidelberg-New York-Tokyo, 1996. [5] D. Jaruszewska-Walczak, Z. Kamont, Numerical methods for hyperbolic functional differential problems on the Haar pyramid, Computing, 65 (2000), 45-72. [6] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, Boston, Lonodon, 1999. [7] Z. Kamont, H. Leszczynski, Stability of difference equations generated by parabolic differential- functional problems, Rendiconti Mat. Ser. VII, 16 (1966), 265-287. [8] H. Leszczynski, Convergence of one step difference methods for nonlinear parabolic differential-functional systems with initial-boundary conditions of the Diruchlet type, Ann. Soc. Math. Polon., Comment. Math., 30 (1990), 357-375. [9] H. Leszczynski, On the existence and uniqueness of weak solutions of the Cauchy problem for weakly coupled systems of non-linear partial differential functional equations of the first order, Boll. Un. Mat. Ital., 7-B (1993), no. 7, 323-354. [10] H. Leszczynski, Finite difference schemes for a non-linear heat equations with functional dependence, ZAMM Z. Angew. Math. Mech., 79 (1999), 53-64. [11]K. M. Magomedov, A. S. Kholodov, Mesh-Characteristics Numerical Methods, Moscow, Nauka, 1988, In Russian. [12] M. Malec, Sur une m ́ethode des differences finies pour ́equation non lin ́eaire int ́egro differentielle ́a argument retard ́e, Bull. Acad. Polon. Sci., Ser, Sci. Math. Phys. Astr., 26 (1978), 501-517. [13] M. Malec, A. Schafiano, M ́ethode aux diff ́erences finies pour une ́equation non lin ́eaire diff ́erentielle fonctionelle du type parabolic avec une condition initiale de Cauchy, Boll. Un. Mat. Ital., 7 (1987), 99-109. [14] C.V. Pao, Numerical methods for systems of nonlinear parabolic equations with time delays, J. Math. Anal. Appl., 240 (1999), 249-279. [15] K. Prz ̧adka, Convergence of one-step difference methods for first order partial differential functional equations, Atti. Sem. Mat. Fis. Univ. Modena, 35 (1987), 263-288. [16] K. Prz ̧adka, Difference methods for non-linear partial differential-functional equations of the first order, Math. Nachr., 138 (1988), 105-123. [17] R. Redheffer, W. Walter, Uniqueness, stability and error estimation for parabolic functional-differential equations, Complex Analysis and its Applications, Collect. Articl. Steklov. Math. Inst. Moscow (1978), 494-513.
[18] H.J. Reinhardt, Analysis of Approximation Methods for Differential and Integral Equations, New York, 1985. |