COMPLEXIFIED FUETER OPERATORS IN CLASSICAL AND QUANTUM ELECTRODYNAMICS

TitleCOMPLEXIFIED FUETER OPERATORS IN CLASSICAL AND QUANTUM ELECTRODYNAMICS
Publication TypeJournal Article
Year of Publication2005
AuthorsMachado, JM, Borges, MF
Secondary TitleCommunications in Applied Analysis
Volume9
Issue2
Start Page213
Pagination226
Date Published04/2005
Type of Workscientific: mathematics
ISSN1083–2564
AMS30E99, 30G99
Abstract

In this paper, we analyse some structural similarities between Maxwell and Dirac equations in the framework of a complexified Fueter operator formalism.

 

URLhttp://www.acadsol.eu/en/articles/9/2/5.pdf
Short TitleComplexified Fueter Operators
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. Fueter, Die Funktionentheorie der Differentialgleichungen ∆φ = 0 und ∆∆φ = 0 mit vier reellen Variablen, Comment. Math. Helv., 7 (1935), 307-330.
[2] V. E. Balabaev, Quaternion analog of Cauchy-Riemann system in 4-dimensional complex space and some of its applications, Doklady Akademii Nauk SSSR, 214 (1974), no. 13, 489-491.
[3] V. Kassandrov, Conformal mappings, hyperanalyticity and field dynamics, Acta Applicandae Mathematicae, 50 (1998), 197-206.
[4] I. N. Vekua, Generalized Analytic Functions, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, 1962.
[5] J. M. Machado, M. F. Borges, New remarks on the differentiability of hypercomplex functions, International Journal of Applied Mathematics, 8 (2002), no. 1, 85-101.
[6] J. M. Machado, M. F. Borges, Quaternionic differential operators and fueter analyticity, International Journal of Pure and Applied Mathematics, 3 (2002), no. 1, 63-70.
[7] J. M. Machado, M. F. Borges, Hypercomplex functions and conformal mappings, International Journal of Applied Mathematics, 9, (2002), no. 1, 27-38.
[8] O.P.S. Negi, S. Bisht and P. S. Bisht, Revisiting quaternion formulation and electromagnetism, Nuovo Cimento B, 113 (1998), no. 12, 1449-1467.
[9] C. A. Deavours, The quaternionic calculus, The American Mathematical Monthly, 80 (1973), no. 9, 995-1008.
[10] H. E. Moses, Solution of Maxwell equations in terms of a spinor notation: the direct and inverse problem, Physical Review, 113 (1959), no. 6, 1670-1679.
[11] W. Greiner, Relativistic Quantum Mechanics - Wave Equations, Springer, 2000.
[12] E. Lord, Tensors, Relativity and Cosmology, Mc-Graw-Hill, 1976.
[13] E. Witten, Magic, mistery and matrix, In: Mathematics, Frontiers and Perspectives, American Mathematical Society, 1999, 460.
[14] R. Penrose, Mathematical physics in the 20th and 21th century, In: Mathematics, Frontiers and Perspectives, American Mathematical Society, 1999, 460.
[15] M. F. Borges, Bianchi identities for an N = 2, d = 5 supersymmetric Yang-Mills theory on the group-manifold, Journal of Geometry and Physics, 20 (1996), 142-148.
[16] M. F. Borges, Geometrical Lagrangian for a supersymmetric Yang-Mills Theory on the group manifold, Mathematical Physics, Analysis and Geometry, 5 (2002), 307-318.