Title | COMPLEXIFIED FUETER OPERATORS IN CLASSICAL AND QUANTUM ELECTRODYNAMICS |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Machado, JM, Borges, MF |
Secondary Title | Communications in Applied Analysis |
Volume | 9 |
Issue | 2 |
Start Page | 213 |
Pagination | 226 |
Date Published | 04/2005 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 30E99, 30G99 |
Abstract | In this paper, we analyse some structural similarities between Maxwell and Dirac equations in the framework of a complexified Fueter operator formalism.
|
URL | http://www.acadsol.eu/en/articles/9/2/5.pdf |
Short Title | Complexified Fueter Operators |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] R. Fueter, Die Funktionentheorie der Differentialgleichungen ∆φ = 0 und ∆∆φ = 0 mit vier reellen Variablen, Comment. Math. Helv., 7 (1935), 307-330.
[2] V. E. Balabaev, Quaternion analog of Cauchy-Riemann system in 4-dimensional complex space and some of its applications, Doklady Akademii Nauk SSSR, 214 (1974), no. 13, 489-491. [3] V. Kassandrov, Conformal mappings, hyperanalyticity and field dynamics, Acta Applicandae Mathematicae, 50 (1998), 197-206. [4] I. N. Vekua, Generalized Analytic Functions, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, 1962. [5] J. M. Machado, M. F. Borges, New remarks on the differentiability of hypercomplex functions, International Journal of Applied Mathematics, 8 (2002), no. 1, 85-101. [6] J. M. Machado, M. F. Borges, Quaternionic differential operators and fueter analyticity, International Journal of Pure and Applied Mathematics, 3 (2002), no. 1, 63-70. [7] J. M. Machado, M. F. Borges, Hypercomplex functions and conformal mappings, International Journal of Applied Mathematics, 9, (2002), no. 1, 27-38. [8] O.P.S. Negi, S. Bisht and P. S. Bisht, Revisiting quaternion formulation and electromagnetism, Nuovo Cimento B, 113 (1998), no. 12, 1449-1467. [9] C. A. Deavours, The quaternionic calculus, The American Mathematical Monthly, 80 (1973), no. 9, 995-1008. [10] H. E. Moses, Solution of Maxwell equations in terms of a spinor notation: the direct and inverse problem, Physical Review, 113 (1959), no. 6, 1670-1679. [11] W. Greiner, Relativistic Quantum Mechanics - Wave Equations, Springer, 2000.
[12] E. Lord, Tensors, Relativity and Cosmology, Mc-Graw-Hill, 1976. [13] E. Witten, Magic, mistery and matrix, In: Mathematics, Frontiers and Perspectives, American Mathematical Society, 1999, 460. [14] R. Penrose, Mathematical physics in the 20th and 21th century, In: Mathematics, Frontiers and Perspectives, American Mathematical Society, 1999, 460. [15] M. F. Borges, Bianchi identities for an N = 2, d = 5 supersymmetric Yang-Mills theory on the group-manifold, Journal of Geometry and Physics, 20 (1996), 142-148. [16] M. F. Borges, Geometrical Lagrangian for a supersymmetric Yang-Mills Theory on the group manifold, Mathematical Physics, Analysis and Geometry, 5 (2002), 307-318. |