TIMELIKE SPATIALLY CLOSED TRAJECTORIES UNDER A POTENTIAL ON SPLITTING LORENTZIAN MANIFOLDS

TitleTIMELIKE SPATIALLY CLOSED TRAJECTORIES UNDER A POTENTIAL ON SPLITTING LORENTZIAN MANIFOLDS
Publication TypeJournal Article
Year of Publication2005
AuthorsBartolo, R
Secondary AuthorsGerminario, A
Secondary TitleCommunications in Applied Analysis
Volume9
Issue2
Start Page177
Pagination205
Date Published04/2005
Type of Workscientific: mathematics
ISSN1083–2564
AMS58E05, 83C10, 83C50
Abstract

We study the periodic motions of a relativistic particle submitted to the action of an external potential V . On a wide class of Lorentzian manifolds, we find timelike solutions of a differential equation (depending on V ) closed in the spatial component and satisfying a Dirichlet condition in the temporal one. We prove a multiplicity result for the critical points of the (strongly indefinite) functional associated to the problem, using a saddle type theorem based on the notion of relative category. The periodicity of the problem, the non–compactness of the manifold and the lack of some assumptions involving the relative category make necessary to use a suitable penalization scheme and a Galerkin approximation.

 

URLhttp://www.acadsol.eu/en/articles/9/2/3.pdf
Short TitleTimelike Spatially Closed Trajectories
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. Bartolo, A. Germinario and M. S ́anchez, Existence of a closed geodesic on non–compact Riemannian manifolds with boundary, Advanced Nonlinear Studies, 2 (2002), 51-69.
[2] J.K. Beem, P.E. Ehrlich, K.L. Easley, Global Lorentzian Geometry, Second Edition, Pure App. Math., Volume 202, Marcel Dekker, New York, 1996.
[3] V. Benci, Periodic solutions of Lagrangian systems on a compact manifold, J. Differential Equations, 63 (1986), 135-161.
[4] V. Benci and D. Fortunato, Periodic trajectories for the Lorentz metric of a static gravitational field, In: Proc. of Variational Methods (Ed-s: H. Berestycki, J.M. Coron and I. Ekeland), Paris (1988), 413-429.
[5] V. Benci, D. Fortunato and F. Giannoni, On the existence of multiple geodesics in static space–times, Ann. Inst. H. Poincar ́e Anal. Non Lin ́eaire, 8 (1991), 79-102.
[6] V. Benci, D. Fortunato and F. Giannoni, On the existence of periodic trajectories in static Lorentz manifolds with singular boundary, In: Nonlinear Analysis, a Tribute in Honour of G. Prodi, Quaderni della Scuola Normale Superiore, Pisa (Ed-s: A. Ambrosetti and A. Marino) (1991), 109-133.
[7] V. Benci, D. Fortunato and A. Masiello, On the geodesic connectedeness of Lorentzian manifolds, Math. Z., 217 (1994), 73-93.
[8] A.M. Candela, F. Giannoni and A. Masiello, Multiple critical points for indefinite functionals and applications, J. Differential Equations, 155 (1999), 203-230.
[9] E. Fadell and S. Husseini, Category of loop spaces of open subsets in Euclidean Space, Nonlinear Anal., 17 (1991), 1153-1161.
[10] E. Fadell and S. Husseini, Relative category, products and coproducts, Rend. Sem. Mat. Fis. Milano, 64 (1994), 99-115.
[11] G. Fournier and M. Willem, Relative category and the calculus of variations, In: Variational problems (Ed-s: H. Berestycki, J.M. Coron and I. Ekeland, Eds), Birkh ̈auser, Basel (1990), 95-104.
[12] G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, In: Dynamics Reported, Volume III, Springer–Verlag, Berlin (1994), 1-24.
[13] R. Geroch, Domains of dependence, J. Math. Phys., 11 (1970), 437-449.
[14] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Morse theory for light rays, Gen. Rel. and Gravitation, 7 (1996), 855-897.
[15] C. Greco, Periodic trajectories in static space–times, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 99-103.
[16] C. Greco, Periodic trajectories for a class of Lorentz metrics of a time–dependent gravitational field, Math. Ann., 287 (1990), 515-521.
[17] W. Klingenberg, Lectures on Closed Geodesics, Springer–Verlag, Berlin–Heidelberg–New York, 1978.
[18] A. Masiello, Variational Methods in Lorentzian Geometry, Pitman Res. Notes Math. Ser., 309, Longman, London, 1994.
[19] A. Masiello, On the existence of a timelike periodic trajectory for a Lorentzian metric, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 807-815.
[20] B. O’Neill, Semi–Riemannian Geometry with applications to Relativity, Academic Press, New York–London, 1983.
[21] A. Romero and M. Sanchez, Completitud de las soluciones de una ecuaci   on diferencial que extiende a la de las geod ́esicas: movimiento de las part ́ıculas en un campo de fuerzas, Universidad de Granada, Preprint.
[22] M. Sanchez, Some remarks on Causality Theory and Variational methods in Lorentzian Geometry, Conf. Semin. Mat. Univ. Bari, 265 (1997), 1-12.
[23] M. Sanchez, Geodesics in static spacetimes and t–periodic trajectories, Nonlinear Anal., 35 (1999), 677-686.
[24] M. Sanchez, Timelike periodic trajectories in spatially compact Lorentz manifolds, Proc. Amer. Math. Soc., 127 (1999), 3057-3066.
[25] A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., 15 (1990), 725-739.