SOME SECOND ORDER DIFFERENCE EQUATIONS IN HILBERT SPACES

TitleSOME SECOND ORDER DIFFERENCE EQUATIONS IN HILBERT SPACES
Publication TypeJournal Article
Year of Publication2005
AuthorsApreutesei, N
Secondary TitleCommunications in Applied Analysis
Volume9
Issue1
Start Page105
Pagination115
Date Published01/2005
Type of Workscientific: mathematics
ISSN1083–2564
AMS39A12, 39A70, 47H05
Abstract

An existence result for some second order difference equations is given. These equations are governed by maximal monotone operators in Hilbert spaces and they are the discrete analogs of some abstract evolution equations. The main tool we use is the theory of maximal monotone operators in Hilbert spaces.

 

URLhttp://www.acadsol.eu/en/articles/9/1/7.pdf
Short TitleSecond Order Difference Equations
Refereed DesignationRefereed
Full Text

REFERENCES

[1] A. Aftabizadeh and N. Pavel, Boundary value problems for second order differential equations and a convex problem of Bolza, Diff. Integral Eqns., 2 (1989), 495-509.
[2] A. Aftabizadeh and N. Pavel, Nonlinear boundary value problems for some ordinary and partial differential equations associated with monotone operators, J. Math. Anal. Appl., 156 (1991), 535-557.
[3] N. Apreutesei, A boundary value problem for second order differential equations in Hilbert spaces, Nonlinear Analysis, TMA, 24 (1995), 1235-1246.
[4] N. Apreutesei, Second order differential equations on half-line associated with monotone operators, J. Math. Anal. Appl., 223 (1998), 472-493.
[5] N. Apreutesei, Existence and asymptotic behavior for a class of second order difference equations, To appear in J. Difference Eq. Appl.
[6] N. Apreutesei, Existence results for a class of difference inclusions, To appear.
[7] V. Barbu, Sur un probleme aux limites pour une classe d’equations differentielles nonlineaires abstraites du deuxieme ordre en t, C.R. Acad. Sci. Paris, 274 (1972), 459-462.
[8] V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo, Sect 1, 19 (1972), 295-319.
[9] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
[10] H. Br ́ezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, In: Contributions to Nonlinear Functional Analysis (Ed. E. Zarantonello), Acad. Press, 1971.
[11] H. Brezis, Equations  d’evolution du second ordre associees a des operateurs monotones, Israel J. Math., 12 (1972), 51-60.
[12] E. Mitidieri and G. Morosanu, Asymptotic behaviour of the solutions of second order difference equations associated to monotone operators, Numerical Funct. Anal. Optim., 8 (1986-1987), 419-434.
[13] G. Morosanu, Second order difference equations of monotone type, Numerical Funct. Anal. Optim., 1 (1979), 441-450.
[14] E. Poffald and S. Reich, An incomplete Cauchy problem, J. Math. Anal. Appl., 113 (1986), 514-543.
[15] S. Reich and I. Shafrir, An existence theorem for a difference inclusion in general Banach spaces, J. Math. Anal. Appl., 160 (1991), 406-412.
[16] L. Veron, Problemes d’evolution du second ordre associes a des operateurs monotones, C.R. Acad. Sci. Paris, 278 (1974), 1099-1101.