PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS WITH SMALL PERTURBATIONS

TitlePERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS WITH SMALL PERTURBATIONS
Publication TypeJournal Article
Year of Publication2005
AuthorsChen, YQ
Secondary AuthorsCho, YJ, Kang, SM
Secondary TitleCommunications in Applied Analysis
Volume9
Issue1
Start Page33
Pagination41
Date Published01/2005
Type of Workscientific: mathematics
ISSN1083–2564
AMS34C25, 34G20, 47H05, 47H10
Abstract

Let A : R × E → E be a limit mapping of class (S+ ), where E is a real reflexive Banach space. We study the existence of periodic solutions of the following evolution equation

As a special case, we derive the existence of periodic solutions when A is pseudomonotone.

 

URLhttp://www.acadsol.eu/en/articles/9/1/3.pdf
Short TitlePeriodic Solutions for Evolution Equations
Refereed DesignationRefereed
Full Text

REFERENCES

[1] H. Amann, Dynamic theory of quasilinear parabolic equations, I. Abstract evolution equations, Non. Anal., 12 (1988), 895-919.
[2] J. P. Aubin, I. Ekland, Applied Nonlinear Analysis, John Wiley & Sons, 1984.
[3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Groningen, 1976.
[4] J. Berkovits and V. Mustonen, Monotonicity methods for nonlinear evolution equations, Non. Anal., 27 (1996), 1397-1405.
[5] J. Berkovits, V. Mustonen, Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rc. Mat., Serie VII, 12 (1992), 597-621.
[6] F. E. Browder, Nonlinear Operators and Nonlinear Equations of Evolution, Proc. Symp. Pure Math., 18, Part 2, Amer. Math. Soc., Providence, RI, 1976.
[7] F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9 (1983), 1-39.
[8] F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. USA., 53 (1965), 1100-1103.
[9] S. S. Chang, Y. Q. Chen and B. S. Lee, Some existence theorems for differential inclusions in Hilbert spaces, Bull. Austral. Math. Soc., 54 (1996), 317-327.
[10] Y. Q. Chen, Periodic solutions for evolution equations in Hilbert spaces, Yokohama Math. J., 44 (1997), 43-53.
[11] M. G. Crandall and P. E. Souganidis, On nonlinear equations of evolution, Non. Anal., 13 (1989), 1375-1392.
[12] K. Deimling, Periodic solutions of differential equations in Banach spaces, Manuscript Math., 24 (1978), 31-44.
[13] N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc., 120 (1994), 185-192.
[14] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lect. Notes Math., 448, 25-70, Springer-Verlag, 1975.
[15] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, C.I.M.E. II Ciclo, Hyperbolicity (1976), 125-191.
[16] J. Pruss, Periodic solutions of semilinear evolution equations, Non. Anal., 3 (1979), 221-235.
[17] N. Shioji, Existence of periodic solutions for nonlinear evolution equations with pseudo monotone operators, Proc. Amer. Math. Soc., 125 (1997), 2921-2929.
[18] I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990), 653-661.