QUATERNION FUNCTIONS AND FOUR-DIMENSIONAL RIEMANNIAN METRICS

TitleQUATERNION FUNCTIONS AND FOUR-DIMENSIONAL RIEMANNIAN METRICS
Publication TypeJournal Article
Year of Publication2005
AuthorsMachado, JM
Secondary AuthorsBorges, MF
Secondary TitleCommunications in Applied Analysis
Volume9
Issue1
Start Page15
Pagination31
Date Published01/2005
Type of Workscientific: mathematics
ISSN 1083–2564
AMS30E99, 30G99
Abstract

In this paper we discuss homeomorphic transformations of Riemannian metrics in four-dimensional  Riemannian manifolds, and show that these transformations are related to the solutions of Beltrami-type systems of differentiable, quaternionic functions. It is introduced the concept of quaternionic factorization of metrics, and demonstrated that monogenic functions are a particular case in a larger class of quaternionic differentiable functions. This class is formed by the solutions of an homogeneous operator equation, constructed for any factorizable, Riemannian metric.

 

URLhttp://www.acadsol.eu/en/articles/9/1/2.pdf
Short TitleQuaternion Functions
Refereed DesignationRefereed
Full Text

REFERENCES

[1] I. N. Vekua, Generalized Analytic Functions, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, 1962.
[2] L. Bers, Quasiconformal mappings with applications to differential equations, function theory and topology, Bulletin of the American Mathematical Society, 83 (1977), no. 6 (1977), 1083-1099.
[3] L. Bers, An outline of the theory of pseudoanalytic functions, Bulletin of the American Mathematical Society, 62 (1956), no. 4, 291-331.
[4] C. Loewner, On the conformal capacity in space, J. Math. Mech., 8 (1959), 411-414.
[5] J. V ̈as ̈al ̈a, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, Volume 229, Springer-Verlag, 1971.
[6] F. W. Gehring, Quasiconformal mappings in space, Bulletin of the American Mathematical Society, 69 (1963), no. 2, 146-164.
[7] J. Heinonen, P. Koskela, N. Shanmugalingam, T. Tyson, Sobolev classes of Banach space valued functions and quasiconformal mappings, Journal d’Analyse Math ́ematique, 85 (2001), 87-139.
[8] J. Heinonen, P. Koskela, A∞ condition for the Jacobian of a quasi-conformal mapping, Proceedings of the American Mathematical Society, 20 (1994), no. 2, 535-543.
[9] B. Bojarski, T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in R n , Annales Academiae Scientiarum Fennicae, 8 (1983), 257-324.
[10] P. Cerejeiras, K. G ̈ urlebeck, U. Kahler, H. Malonek, A Quaternionic Beltrami-Type Equation and the Existence of Local Homeomorphic Solutions, Zeitschrift fur Analysis und ihre Anwendungen, 20 (2001), no. 1, 17-34.
[11] R. Fueter, Die Funktionentheorie der Differentialgleichungen ∆φ = 0 und ∆∆φ = 0 mit vier reellen Variablen, Comment. Math. Helv., 7 (1935), 307-330.
[12] A. Sudbery, Quaternionic analysis, Mathematical Proceedings of the Cambridge Philosophycal Society, 85 (1979), 199-225.
[13] D. Lovelock, H. Rund, Tensors, Differential Forms, and Variational Principles, John Wiley & Sons, 1977.
[14] M. Ansorg, Differentially Rotating Disks of Dust: Arbitrary Rotating Law, General Relativity and Gravitation, 33 (2001), no. 2, 309-338.
[15] J. M. Machado, M. F. Borges, New remarks on the differentiability of hypercomplex functions, International Journal of Applied Mathematics, 8 (2002), no. 1, 85-101.
[16] J. M. Machado, M. F. Borges, Hypercomplex Functions and Conformal Mappings, International Journal of Applied Mathematics, 9 (2002), no. 1, 27-38.
[17] E. Lord, Tensors, Relativity and Cosmology, Mc-Graw-Hill, 1976.
[18] C. M ̈oller, Conservation laws and absolute parallelism in general relativity, Mat. Fys. Skr. Dan. Vid. Selsk., 1 (1961), no. 10.
[19] C. Pellegrini, J. Plebanski, Tetrad fields and gravitational fields, Mat. Fys. Skr. Dan. Vid. Selsk., 2 (1966), no. 4.
[20] M. F. Borges, Bianchi identities for an N = 2, d = 5 supersymmetric Yang-Mills theory on the group-manifold, Journal of Geometry and Physics, 20 (1996), 142-146.
[21] W. L. Bade, H. Jehle, An introduction to spinors, Review of Modern Physics, 25 (1953), 714.
[22] E. Cartan, The Theory of Spinors, The MIT Press, 1975, 157pp.