ASYMPTOTIC BEHAVIOR OF THE EIGENVALUES OF THE LINEARIZED GINZBURG-LANDAU OPERATOR

TitleASYMPTOTIC BEHAVIOR OF THE EIGENVALUES OF THE LINEARIZED GINZBURG-LANDAU OPERATOR
Publication TypeJournal Article
Year of Publication2005
AuthorsBeaulieu, A
Secondary TitleCommunications in Applied Analysis
Volume9
Issue1
Start Page1
Pagination14
Date Published01/2005
Type of Workscientific: mathematics
ISSN1083-2564
AMS35B40
Abstract

We consider the linearized operators, denoted by Ld,1, of the GinzburgLandau operator ∆u + u(1− | u |2) in R2 , about the radial solutions ud,1(x) = fd(r)e idθ. We prove that for all d ≥ 1 the real vector space of the bounded solutions of the equation Ld,1w = 0 is spanned by the three functions that correspond to the invariance of the equation ∆u + u(1− | u | 2 ) = 0 under the action of the rotations and the translations.

URLhttp://www.acadsol.eu/en/articles/9/1/1.pdf
Short TitleAsymptotic Behavior of the Eigenvalues
Refereed DesignationRefereed
Full Text

REFERENCES 

[1] L. Almeida, F. Bethuel, Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, Houston Journal of Math., 23, No.4 (1997), 733-764. 
[2] A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation, To appear in: Nonlinear Analysis, TMA. 14 Beaulieu 
[3] F. Bethuel, H. Brezis, F. H´elein, Ginzburg-Landau-Vortices, Birkh¨auser, 1994. 
[4] M. Comte, P. Mironescu, A bifurcation analysis for the Ginzburg-Landau equation, Arch. Rational Mech. Anal., 144 (1998), 301-311. 
[5] M. Comte, P. Mironescu, Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation, Proc. Royal Society Edinb., 129A (1999), 1157-1169. 
[6] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. inst. Henri Poincar´e, 12 (1995), no.5, 599-622. 
[7] T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Comm. in PDE., 22 (1997), 619-632. 
[8] T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation and its applications, Preprint. 
[9] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equations, J. Funct. Anal., 130 (1995), no.2, 334-344. 
[10] F. Pacard, T. Rivi`ere, Linear and Nonlinear Aspects of Vortices: the Ginzburg-Landau Model, Birkh¨auser, 2000. 
[11] P. Hagan, Spiral waves in reaction diffusion equations, SIAM J. Appl. Math., 42 (1982), no. 4, 762-786. 
[12] R.M. Herv´e, M. Herv´e, Etude qualitative des solutions r´eelles d’une equation diff´erentielle li´ee `a l’equation de Ginzburg-Landau, Ann. Inst. Henri Poincar´e, 11 (1994), no.4, 427-440.