REFERENCES
[1] Ya.I. Alber, R. Burachik and A.N. Iusem, A proximal point method for nonsmooth convex
optimization problems in Banach spaces, Abstract and Applied Analysis, 2 (1997), 97-120.
[2] Ya.I. Alber, S. Guerre-Delabriere and L. Zelenko, The principle of weakly contractive maps in
metric spaces, Communications on Applied Nonlinear Analysis, 5 (1998), no.1, 45-68.
[3] Ya.I. Alber, A.N. Iusem and M.V. Solodov, Minimization of nonsmooth convex functionals in
Banach spaces, Journal of Convex Analysis, 4 (1997), 235-254.
[4] Ya.I. Alber and A. Notik, Geometric properties of Banach spaces and approximate methods
of solution of nonlinear operator equations, Soviet Math. Dokl., 29 (1984), 611-615.
[5] Ya.I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations
in Banach spaces, Panamerican Math. J., 4 (1994), no.2, 39-54.
[6] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458-464.
[7] F.E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in Banach
spaces, Bull. Amer. Math. Soc., 73 (1967), 867-874.
[8] F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull.
Amer. Math. Soc., 73 (1967), 875-882.
[9] F.E. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces,
Proc. Symp. Pure Math., Vol. 18, Part 2, AMS, Providence, RI, 1976.
[10] R.E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in
Banach spaces, Houston J. Math., 3 (1977), 459-470.
[11] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer.
Math. Soc., 215 (1976), 241-251.
[12] K. Deimling, Zeros of accretive operators, Manuscripta Math., 13 (1974), 365-374.
[13] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
[14] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings,
Pure and Applied Math., Vol. 83 , Marcel Dekker, New York, 1984.
[15] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508- 520.
[16] W.A. Kirk and C. Morales, Fixed point theorems for local strong pseudo-contractions, Nonlinear
Analysis, 4 (1980), 363-368.
[17] W.A. Kirk and R. Sch¨oneberg, Some results on pseudo-contractive mappings, Pacific J. Math., 71 (1977), 89-100.
[18] K. Knopp, Theory and Application of Infinite Series, Dover, New York, 1990.
[19] R.H. Martin, Jr., Differential equations on closed subsets of Banach spaces, Trans. Amer.
Math. Soc., 179 (1973), 399-414.
[20] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329.
[21] C. Morales, On fixed points for local k-pseudo-contractions, Proc. Amer. Math. Soc., 81 (1981), 71-74.
[22] C. Morales and S.A. Mutangadora, On a fixed point theorem of Kirk, Proc. Amer. Math. Soc., 123 (1995), 3397-3401.
[23] O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative
methods for accretive operators in Banach spaces, Israel J. Math., 32 (1979), 44-58.
[24] S. Reich, On fixed point theorems obtained from existence theorems for differential equations,
J. Math. Anal. Appl., 54 (1976), 26-36.
[25] S. Reich, Iterative methods for accretive sets, in Nonlinear Equations in Abstract Spaces,
Academic Press, New York, 1978, 317-326.
[26] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.
Anal. Appl., 75 (1979), 274-276.
[27] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces,
J. Math. Anal. Appl., 67 (1980), 287-292.
[28] J.R.L. Webb, Zeros of weakly inward accretive mappings via A-proper maps, in: Theory and
Applications of Nonlinear Operators of Accretive and Monotone Type (A.G. Kartsatos, Editor),
Marcel Dekker, New York, 1996, 289-297.