ON SOME CLASS OF VARIATIONAL INEQUALITIES AND THEIR REGULARITY PROPERTIES

TitleON SOME CLASS OF VARIATIONAL INEQUALITIES AND THEIR REGULARITY PROPERTIES
Publication TypeJournal Article
Year of Publication2002
AuthorsChipot, M, Kis, L
Volume6
Issue1
Start Page27
Pagination22
Date Published2002
ISSN1083-2564
AMS35J25, 35J85, 49J40
Abstract

In this paper we develop a regularity theory for variational inequalities of nonlocal type. Using the Lagrange multipliers idea the solution of the variational inequality is shown to be also solution of an equation.

URLhttp://www.acadsol.eu/en/articles/6/1/3.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces
de Hilbert, Mathematics Studies 5, North Holland, New York, 1973.
[2] H. Brezis, Problemes unilat´eraux, J. Math. Pure et Appl., 51 (1972), 1–162.
[3] H. Brezis, Nouveaux Th´eor`emes de Regularit´e pour les Probl`emes Unilat´eraux, Recontre entre
physiciens th´eoriciens et math´ematiciens 12. (1971), Strasbourg.
[4] H. Brezis, Analyse Fonctionnelle, Masson.
[5] H. Brezis and G. Stampacchia, Remarks on some fourth order Variational Inequalities, Ann.
della Scuola Norm. Sup. Pisa, 4 (1977), 363–371.
[6] M. Chipot, Variational Inequalities and Flow in Porous Media, Springer Verlag, New York, 1984.
[7] M. Chipot and A. Ellalifi, Regularity results for nonlocal variational inequalities, Comm. Appl.
Analysis, 2 (1998), 1–9.
[8] M. Chipot and L. Kis, Existence results for monotone perturbations of the Dirichlet problem, preprint.
[9] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer Verlag, 1983.
[10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their
Applications, Academic Press, 1980.
[11] L. Kis, Perturbations du Probl`eme de Dirichlet, Thesis, Universit´e de Metz, 1998.
[12] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, Math. Studies 134, North Holland, 1987.