REFERENCES
[1] C. K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden
layer, J. Appr. Theory, 70 (1992), 131–141.
[2] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal
approximators, Neural Networks, 2 (1989), 359–366.
[3] B. Lenze, On multidimensional Lebesgue-Stieltjes convolution operators, in: Multivariate Approximation
Theory IV, C.K. Chui, W. Schempp, and K. Zeller (Eds.), ISNM 90, Birkh¨auser
Verlag, Basel, 1989, 225–232.
[4] B. Lenze, Constructive multivariate approximation with sigmoidal functions and applications
to neural networks, in: Numerical Methods of Approximation Theory, D. Braess and L.L.
Schumaker (Eds.), ISNM 105, Birkh¨auser Verlag, Basel, 1992, 155–175.
[5] B. Lenze, Quantitative approximation results for sigma-pi-type neural network operators, in:
Multivariate Approximations: From CAGD to Wavelets, K. Jetter and F. Utreras (Eds.), World
Scientific, Singapore, 1993, 193–209.
[6] B. Lenze, Local behaviour of neural network operators –Approximation and Interpolation–,
Analysis, 13 (1993), 377–387.
[7] B. Lenze, How to make sigma-pi neural networks perform perfectly on regular training sets,
Neural Networks, 7 (1994), 1285–1293.
[8] B. Lenze, One-sided approximation and interpolation operators generating hyperbolic sigma-pi
neural networks, in: Multivariate Approximation and Splines, G. N¨urnberger, J.W. Schmidt,
and G. Walz (Eds.), ISNM 125, Birkh¨auser Verlag, Basel, 1997, 99–112.
[9] H. N. Mhaskar and C. A. Micchelli, Degree of approximation by neural and translation networks
with a single hidden layer, Adv. in Appl. Math., 16 (1995), 151–183.
[10] A. Pinkus, TDI-subspaces of C(IRd
) and some density problems from neural networks, J. Appr.
Theory, 85 (1996), 269–287.
[11] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, New York, 1981.